Key Blocking Operators in the Mono Class

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson
» Recognize key Mono operators

 Blocking operators

» These operators block awaiting
a Mono to emit its value

 e.g., block() & blockOptional()

The Mono that emits a value typically runs asynchronously in a different thread of control

Key Blocking Operators
in the Mono Class

Key Blocking Operators in the Mono Class
« The block() operator T block()

 Subscribe to this Mono & block
until a next signal is received

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#block

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#block--

Key Blocking Operators in the Mono Class

« The block() operator T block()

 Subscribe to this Mono & block
until a next signal is received

« Returns the value received or null
if the Mono completes empty

Key Blocking Operators in the Mono Class

« The block() operator T block()

 Subscribe to this Mono & block
until a next signal is received

o If the Mono errors, the original
exception is thrown

Key Blocking Operators in the Mono Class

» The block() operator T block()
) SUbscrlbe to thls Mono & bIOCk public class RuntimeException
until a next signal is received extends Exception

RuntimeException is the superclass of those exceptions that
can be thrown during the normal operation of the Java
Virtual Machine.

RuntimeException and its subclasses are unchecked

° If the MonO errors, the Orlglnal exceptions. Unchecked exceptions do not need to be
. . h declared in a method or constructor's throws clause if they
exce ptlon IS t rown can be thrown by the execution of the method or

constructor and propagate outside the method or

° A CheCKEd exceptlon |S Wrapped constructor boundary.

in @ RuntimeException

See docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

Key Blocking Operators in the Mono Class

* The block() operator
» Subscribe to this Mono & block

until a next signal is received

« There’s also a version of block()
that blocks until a next signal is
received or a timeout expires

T block (Duration timeout)

See

projectreactor.io/docs/core/release/a

hi/reactor/core/

hublisher/Mono.html#block

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#block-java.time.Duration-

Key Blocking Operators in the Mono Class

e The b|0ck() Operator T block (Duration timeout)
» Subscribe to this Mono & block

until a next signal is received THEBHS "!'_Inv

« There’s also a version of block()
that blocks until a next signal is . |
received or a timeout expires , ‘INIY Sliﬂi: ¢
- If the provided timeout expires, OR B“NTIMQEZEKGEP‘T:I~

a RuntimeException is thrown e b e :

See docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html?is-external=true

Key Blocking Operators in the Mono Class
e The b|0ck() Operator T block (Duration timeout) {

)) BlockingMonoSubscriber<T>
» Subscribe to this Mono & block g

. : . : subscriber = new
until a next signal is received BlockingMonoSubscriber

<>();
subscribe ((Subscriber<T>)
subscriber) ;
return subscriber
.blockingGet
(timeout. toNanos(),
TimeUnit.NANOSECONDS) ;

 block() internally calls subscribe() to
initiate the Mono processing chain

See github.com/readtor/readtor-core/blob/main/reador-core/sre/main/java/reador/core/ publisher/Mono.java

https://github.com/reactor/reactor-core/blob/main/reactor-core/src/main/java/reactor/core/publisher/Mono.java

Key Blocking Operators in the Mono Class

* The block() operator . l > = >

« Should only be used if a value

is needed before proceeding
BigFraction bfl = ; block
BigFraction bf2 = \4 \J
i w3 [T

BigFraction result = Mono

.fromCallable(() -> bfl.multiply (b£f2))

.subscribeOn (Schedulers.single()) Block caller until the back

ground operation completes

.block () ;
System.out.println(result.toMixedString()) ;

See Reactive/mono/ex2/src/main/java/MonoEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex2/src/main/java/MonoEx.java

Key Blocking Operators in the Mono Class
* The block() operator

:

subscribe()
subscribe()

I
I
I

v

%

blockingGet
« RxJava’s blockingGet() operator A @: - 2 crash
is similar S —4 S
BigFraction bfl = = 2 = "
BigFraction bf2 = ... e i AN — —>
BigFraction result = Single
.fromCallable(() -> bfl . multiply(b£f2)))
.subscribeOn (Schedulers.single()) B/OC/cha//er u_nt// the b7Ck
.blockingGet () ; ground operation completes

System.out.println(result.toMixedString())

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet--

Key Blocking Operators in the Mono Class

« The block() operator CompletableFuture<BigFraction>
f = CompletableFuture
.supplyAsync(() -> {
BigFraction bfl = new
BigFraction (sF1) ;
BigFraction bf2 = new
BigFraction (sF2) ;

return bfl .multiply (bf2);
}) s

 Similar to CompletableFuture.join()

= System.out.println
public T join() (" result = "

Returns the result value when complete, or throws an (unchecked) exception if completed

+ f.join() .toMixedString()) ;
exceptionally. To better conform with the use of common functional forms, if a computation

involved in the completion of this CompletableFuture threw an exception, this method
throws an (unchecked) CompletionException with the underly

ing exception as its cause
Returns:

the result value

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join--

Key Blocking Operators in the Mono Class
» The blockOptional() operator Optional<T> blockOptional ()

 Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#blockOptional

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#blockOptional--

Key Blocking Operators in the Mono Class

« The blockOptional() operator Optional<T> blockOptional ()

» Subscribe to this Mono & block

Unt” d neXt Signal iS received Dptional<Soundcard:

or the Mono completes empty
» Returns an Optional

Soundcard

Contains an
object of type
Soundcard

Optional<Soundcard>

An empty Optional

See docs.oracle.com/javase/8/docs/a

pi/java/util/O

htional.html

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html?is-external=true

Key Blocking Operators in the Mono Class

» The blockOptional() operator Optional<T> blockOptional ()

 Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

» Returns an Optional

» Can replace the empty case
with an Exception via Optional
.OrElseThrow()

Dptional<Soundcard: Optional<Soundcard>

Soundcard

Contains an

object of type

Soundcard

An empty Optional

See docs.oracle.com/javase/8/docs/a

pi/java/util/O

htional.html#orElseThrow

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseThrow-java.util.function.Supplier-

Key Blocking Operators in the Mono Class

» The blockOptional() operator Optional<T> blockOptional ()
« Subscribe to this Mono & block
Unt” d neXt Signal iS received Dptional<Soundcard: Optional<Soundcard>

or the Mono completes empty
» Returns an Optional

Soundcard

Contains an An empty Optional
object of type

« Can return a default value via Soundcard
Optional.orElse() or orElseGet()

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse-T-

Key Blocking Operators in the Mono Class

» The blockOptional() operator Optional<T> blockOptional ()

 Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

» Returns an Optional

 Eliminates the dreaded Java NullPointerException

See www.amitph.com/avoid-nullpointerexception-using-java-8-optional

http://www.amitph.com/avoid-nullpointerexception-using-java-8-optional

Key Blocking Operators in the Mono Class

« The blockOptional() operator Optional<T> blockOptional

- Subscribe to this Mono & block (Duration timsout)
until a next signal is received
or the Mono completes empty

« There’s also a blockOptional()
operator that blocks until a next
signal is received or a timeout
expires

See projedreactorio/docs/core/release/api/reactor/core/publisher/Mono.htmi#blockOptional

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#blockOptional-java.time.Duration-

Key Blocking Operators in the Mono Class

« The blockOptional() operator Optional<T> blockOptional
i i Duration timeout
« Subscribe to this Mono & block ()
Untl| d neXt Slgnal |S I‘ecelved public class RuntimeException

extends Exception

or the Mono completes empty

RuntimeException is the superclass of those exceptions that
can be thrown during the normal operation of the Java
Virtual Machine.

’ .
* There S also d bIOCkOpt|Ona|() RuntimeException and its subclasses are unchecked
Operator that bIOCkS unt” a hext exceptions. Unchecked exceptions do not need to be

. .) . declared in a method or constructor's throws clause if they
Slg nal IS I‘eCEIved or a tlmeOUt can be thrown by the execution of the method or

. constructor and propagate outside the method or
expires

constructor boundary.
« If the provided timeout expires,
a RuntimeException is thrown

See docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html?is-external=true

Key Blocking Operators in the

Mono Class

* The blockOptional() operator O I > i >

« Should only be used if a value y Vv
is needed before proceeding : blockOptional
BigFraction bfl = Y _ 4
Optional.of(o) Optional.empty()

BigFraction bf2 = ...

Optional<BigFraction> result = Mono
.fromCallable(() -> bfl . multiply(bf2))
.subscribeOn (Schedulers.single())

Block caller until the back
ground operation completes

.blockOptional() ;

System.out.println (result.map (BigFraction: :toMixedString)
.orElse ("error")) ;

See Reactive/mono/ex2/src/main/java/MonoEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex2/src/main/java/MonoEx.java

Key Blocking Operators in the Mono Class

* The blockOptional() operator

_
-
o0

L S
» There’s no direct RxJava equivalent

22

Key Blocking Operators in the Mono Class
* The blockOptional() operator

:

subscribe()

%

subscribe()

I
I
I

v

blockingGet
@ - crash

. . g
- There’s no direct RxJava equivalent g
BigFraction bfl = ... =

BigFraction bf2 = ... — s e —>

BigFraction result = Single
.fromCallable(() -> bfl . multiply(b£f2))
.subscribeOn (Schedulers.single())
.blockingGet () ;

System.out.println(result.toMixedString())

A ' A
| |
| |
| |
| |
| |
| |

However, blockingGet()
can wait for a result

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet--

Key Blocking Operators in the Mono Class

e The b|ock0pt|ona|() operator CompletableFuture<BigFraction>
f = CompletableFuture
.supplyAsync(() -> {
BigFraction bfl = new
BigFraction (sF1) ;
BigFraction bf2 = new
BigFraction (sF2) ;

return bfl .multiply (b£f2) ;
}) g

 Similar to CompletableFuture.join()

= System.out.println
public T join() (" resuj't = "

Returns the result value when complete, or throws an (unchecked) exception if completed

+ f.join() .toMixedString()) ;
exceptionally. To better conform with the use of common functional forms, if a computation

involved in the completion of this CompletableFuture threw an exception, this method
throws an (unchecked) CompletionException with the underly

ing exception as its cause
Returns:

the result value

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join--

End of Key Blocking
Operators in the Mono Class

25

