
Key Blocking Operators in the Mono Class

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Mono operators

• Concurrency & scheduler operators

• Blocking operators

• These operators block awaiting
a Mono to emit its value

• e.g., block() & blockOptional()

The Mono that emits a value typically runs asynchronously in a different thread of control

3

Key Blocking Operators
in the Mono Class

4

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

Key Blocking Operators in the Mono Class
T block()

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#block

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#block--

5

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Returns the value received or null
if the Mono completes empty

Key Blocking Operators in the Mono Class
T block()

6

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Returns the value received or null
if the Mono completes empty

• If the Mono errors, the original
exception is thrown

Key Blocking Operators in the Mono Class
T block()

7

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Returns the value received or null
if the Mono completes empty

• If the Mono errors, the original
exception is thrown

• A checked exception is wrapped
in a RuntimeException

Key Blocking Operators in the Mono Class
T block()

See docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

8

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Returns the value received or null
if the Mono completes empty

• If the Mono errors, the original
exception is thrown

• There’s also a version of block()
that blocks until a next signal is
received or a timeout expires

Key Blocking Operators in the Mono Class
T block(Duration timeout)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#block

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#block-java.time.Duration-

9

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Returns the value received or null
if the Mono completes empty

• If the Mono errors, the original
exception is thrown

• There’s also a version of block()
that blocks until a next signal is
received or a timeout expires

• If the provided timeout expires,
a RuntimeException is thrown

Key Blocking Operators in the Mono Class
T block(Duration timeout)

See docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html?is-external=true

10

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Returns the value received or null
if the Mono completes empty

• If the Mono errors, the original
exception is thrown

• There’s also a version of block()
that blocks until a next signal is
received or a timeout expires

• block() internally calls subscribe() to
initiate the Mono processing chain

Key Blocking Operators in the Mono Class
T block(Duration timeout) {

BlockingMonoSubscriber<T>

subscriber = new

BlockingMonoSubscriber

<>();

subscribe((Subscriber<T>)

subscriber);

return subscriber

.blockingGet

(timeout.toNanos(),

TimeUnit.NANOSECONDS);

}

See github.com/reactor/reactor-core/blob/main/reactor-core/src/main/java/reactor/core/publisher/Mono.java

https://github.com/reactor/reactor-core/blob/main/reactor-core/src/main/java/reactor/core/publisher/Mono.java

11

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Should only be used if a value
is needed before proceeding

Key Blocking Operators in the Mono Class

BigFraction bf1 = ...

BigFraction bf2 = ...

BigFraction result = Mono

.fromCallable(() -> bf1.multiply(bf2))

.subscribeOn(Schedulers.single())

.block();

System.out.println(result.toMixedString());

Block caller until the back
ground operation completes

See Reactive/mono/ex2/src/main/java/MonoEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex2/src/main/java/MonoEx.java

12

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Should only be used if a value
is needed before proceeding

• RxJava’s blockingGet() operator
is similar

Key Blocking Operators in the Mono Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet

BigFraction bf1 = ...

BigFraction bf2 = ...

BigFraction result = Single

.fromCallable(() -> bf1.multiply(bf2))

.subscribeOn(Schedulers.single())

.blockingGet();

System.out.println(result.toMixedString())

Block caller until the back
ground operation completes

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet--

13

• The block() operator

• Subscribe to this Mono & block
until a next signal is received

• Should only be used if a value
is needed before proceeding

• RxJava’s blockingGet() operator
is similar

• Similar to CompletableFuture.join()

Key Blocking Operators in the Mono Class

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join

CompletableFuture<BigFraction>

f = CompletableFuture

.supplyAsync(() -> {

BigFraction bf1 = new

BigFraction(sF1);

BigFraction bf2 = new

BigFraction(sF2);

return bf1.multiply(bf2);

});

...

System.out.println

("result = "

+ f.join().toMixedString());

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join--

14

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

Key Blocking Operators in the Mono Class
Optional<T> blockOptional()

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#blockOptional

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#blockOptional--

15

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Returns an Optional

Key Blocking Operators in the Mono Class
Optional<T> blockOptional()

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html?is-external=true

16

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Returns an Optional

• Can replace the empty case
with an Exception via Optional
.orElseThrow()

Key Blocking Operators in the Mono Class
Optional<T> blockOptional()

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseThrow

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElseThrow-java.util.function.Supplier-

17

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Returns an Optional

• Can replace the empty case
with an Exception via Optional
.orElseThrow()

• Can return a default value via
Optional.orElse() or orElseGet()

Key Blocking Operators in the Mono Class
Optional<T> blockOptional()

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse-T-

18

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Returns an Optional

• Can replace the empty case
with an Exception via Optional
.orElseThrow()

• Can return a default value via
Optional.orElse() or orElseGet()

• Eliminates the dreaded Java NullPointerException

Key Blocking Operators in the Mono Class
Optional<T> blockOptional()

See www.amitph.com/avoid-nullpointerexception-using-java-8-optional

http://www.amitph.com/avoid-nullpointerexception-using-java-8-optional

19

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Returns an Optional

• There’s also a blockOptional()
operator that blocks until a next
signal is received or a timeout
expires

Key Blocking Operators in the Mono Class
Optional<T> blockOptional

(Duration timeout)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#blockOptional

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#blockOptional-java.time.Duration-

20

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Returns an Optional

• There’s also a blockOptional()
operator that blocks until a next
signal is received or a timeout
expires

• If the provided timeout expires,
a RuntimeException is thrown

Key Blocking Operators in the Mono Class

See docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

Optional<T> blockOptional

(Duration timeout)

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html?is-external=true

21

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Should only be used if a value
is needed before proceeding

Key Blocking Operators in the Mono Class

BigFraction bf1 = ...

BigFraction bf2 = ...

Optional<BigFraction> result = Mono

.fromCallable(() -> bf1.multiply(bf2))

.subscribeOn(Schedulers.single())

.blockOptional();

System.out.println(result.map(BigFraction::toMixedString)

.orElse("error"));

Block caller until the back
ground operation completes

See Reactive/mono/ex2/src/main/java/MonoEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex2/src/main/java/MonoEx.java

22

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Should only be used if a value
is needed before proceeding

• There’s no direct RxJava equivalent

Key Blocking Operators in the Mono Class

23

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Should only be used if a value
is needed before proceeding

• There’s no direct RxJava equivalent

Key Blocking Operators in the Mono Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet

BigFraction bf1 = ...

BigFraction bf2 = ...

BigFraction result = Single

.fromCallable(() -> bf1.multiply(bf2))

.subscribeOn(Schedulers.single())

.blockingGet();

System.out.println(result.toMixedString())

However, blockingGet()
can wait for a result

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#blockingGet--

24

• The blockOptional() operator

• Subscribe to this Mono & block
until a next signal is received
or the Mono completes empty

• Should only be used if a value
is needed before proceeding

• There’s no direct RxJava equivalent

• Similar to CompletableFuture.join()

Key Blocking Operators in the Mono Class

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join

CompletableFuture<BigFraction>

f = CompletableFuture

.supplyAsync(() -> {

BigFraction bf1 = new

BigFraction(sF1);

BigFraction bf2 = new

BigFraction(sF2);

return bf1.multiply(bf2);

});

...

System.out.println

("result = "

+ f.join().toMixedString());

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#join--

25

End of Key Blocking
Operators in the Mono Class

