Key Concurrency & Scheduler

Operators in the Mono Glass (Part 1)

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key Mono operators
« Concurrency & scheduler operators

« These operators arrange to run
other operators in designated
threads & thread pools

* e.g., Mono.subscribeOn() &
Schedulers.single()

Key Concurrency
Operators in the Mono Class

Key Concurrency Operators in the Mono Class
« The subscribeOn() operator Mono<T> subscribeOn (Scheduler

« Run subscribe(), onSubscribe(), scheduler)
& request() on the specified
Scheduler worker

See projectreactorio/docs/core/release/api/reactor/core/publisher/Mono.html#subscribeOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#subscribeOn-reactor.core.scheduler.Scheduler-

Key Concurrency Operators in the Mono Class
« The subscribeOn() operator Mono<T> subscribeOn (Scheduler

« Run subscribe(), onSubscribe(), scheduler)
& request() on the specified
Scheduler worker

» The scheduler param indicates
what thread to perform the
Operatlon On public interface Scheduler

extends

Interface Scheduler

All Superinterfaces:

Provides an abstract asynchronous boundary to operators.

Implementations that use an underlying ExecutorService or
ScheduledExecutorService should decorate it with the
relevant hook

(

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

Key Concurrency Operators in the Mono Class

« The subscribeOn() operator Mono<T> subscribeOn (Scheduler

« Run subscribe(), onSubscribe(), scheduler)
& request() on the specified
Scheduler worker

« Returns the Mono requesting
async processing

Key Concurrency Operators in the Mono Class

» The subscribeOn() operator
Ot

Yy v
subscribeOn (»)

« The semantics of subscribeOn()
are a bit unusual

A

subscribe()

Key Concurrency Operators in the Mono Class

» The subscribeOn() operator return Mono
.fromCallable(() -> BigFraction

.reduce (unreducedFrac))

.subscribeOn (Schedulers.single())

« The semantics of subscribeOn()
are a bit unusual

* Placing this operator in a chain
impacts the execution context
of the onNext(), onError(), &

onComplete() signals .doOnSuccess (bf ->
displayBigFraction (bf, sb))

.doOnSuccess (bf -> logBigFraction
(unreducedFrac, bf, sb))

.map (BigFraction: : toMixedString)

Run all this processing
in a background thread .then () ;

See Reactive/mono/ex2/src/main/java/MonoEXx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex2/src/main/java/MonoEx.java

Key Concurrency Operators in the Mono Class

» The subscribeOn() operator return Mono
.fromCallable(() -> BigFraction

.reduce (unreducedFrac))

.doOnSuccess (bf -> logBigFraction
« The semantics of subscribeOn() (unreducedFrac, bf, sb))

are a bit unusual

* Placing this operator in a chain
impacts the execution context .doOnSuccess (bf ->

of the onNext(), onError(), & displayBigFraction (bf, sb))
onComplete() signals

.map (BigFraction: : toMixedString)

.subscribeOn (Schedulers.single())

subscribeOn() can appear later in| __—
the chain & have the same effect .then () ;

Key Concurrency Operators in the Mono Class
« The subscribeOn() operator O = >

v v
publishon ([)

« The semantics of subscribeOn()
are a bit unusual ;
* Placing this operator in a chain /'\ ‘|' >
impacts the execution context < |
of the onNext(), onError(), &
onComplete() signals
« However, if a publishOn() operator appears later in the chain that will
change the threading context where the rest of the operators in the
chain below it execute (publishOn() can appear multiple times)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#publishOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#publishOn-reactor.core.scheduler.Scheduler-

Key Concurrency Operators in the Mono Class

« The subscribeOn() operator ,O
subscribeOn(D)
« RxJava’s Single.subscribeOn() o

works the same way

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#subscribeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#subscribeOn-io.reactivex.rxjava3.core.Scheduler-

Key Scheduler
Operators in the Mono Class

12

Key Scheduler Operators in the Mono Class
» The Schedulers.single() operator static Scheduler single()

» Hosts a single-threaded Executor
Service-based worker that runs
concurrently wrt the caller

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#single

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#single--

Key Scheduler Operators in the Mono Class

» The Schedulers.single() operator static Scheduler single()

» Hosts a single-threaded Executor
Service-based worker that runs
concurrently wrt the caller

return Mono
.fromCallable(() -> BigFraction.reduce (unreducedFrac))

.subscribeOn (Schedulers.single()) Run all this processing in a
——— single background thread

.doOnSuccess (bf -> logBigFraction (unreducedFrac, bf, sb))
.map (BigFraction: : toMixedString)

.doOnSuccess (bf -> displayBigFraction (bf, sb))

.then() ;

See Reactive/mono/ex2/src/main/java/MonoEXx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex2/src/main/java/MonoEx.java

Key Scheduler Operators in the Mono Class

 The Schedulers.single() operator Clamsiscednlers

° Hosts a Slngle_threaded Executor java.lang.Object
Service-based worker that runs

reactor.core.scheduler.Schedulers

Concurrently Wrt the Ca”er publi; ab;tract class Schedulers
extends Object
° Optlmlzed for IOW_IatenCy Ca”S hedu provides various Scheduler flavors usable by publishon or
that all run in one (& only one) prertbenn
e parallel(): imized for fast Runnable non-blocking executions
baCkground thread e single(:Op('()i?rt\izedforlow-l:tincy F:ulnnableone‘offgexecuttions

: Optimized for longer executions, an alternative for
blocking tasks where the number of active tasks (and threads) can
grow indefinitely

A : Optimized for longer executions, an alternative for
blocking tasks where the number of active tasks (and threads) is
capped

(): toimmediately run submitted Runnable instead of
scheduling them (somewhat of a no-op or "null object" Scheduler)

t to create new instances
around Executors

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

Key Scheduler Operators in the Mono Class

» The Schedulers.single() operator

» Hosts a single-threaded Executor
Service-based worker that runs
concurrently wrt the caller

« Implemented via a “daemon thread”

* i.e., won't prevent the app from
exiting even if its work isn't done

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

Key Scheduler Operators in the Mono Class
» The Schedulers.single() operator

single

@NonNull
public static @NonNull Scheduler single()

Returns a default, shared, single-thread-backed Scheduler
instance for work requiring strongly-sequential execution on the
same background thread.

« RxJava’s Schedulers.single() works
the same way

Uses:

« event loop

 support Schedulers.from(Executor) and
from(ExecutorService) with delayed scheduling

e support benchmarks that pipeline data from some thread to
another thread and avoid core-bashing of computation's
round-robin nature

Unhandled errors will be delivered to the scheduler Thread's
Thread.UncaughtExceptionHandler.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/nxjava3/schedulers/Schedulers.html#single

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#single--

End of Key Concurrency
& Scheduler Operators in
the Mono Class (Part 1)

18

