
Key Concurrency & Scheduler 

Operators in the Mono Class (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize key Mono operators

• Concurrency & scheduler operators

• These operators arrange to run 
other operators in designated
threads & thread pools

• e.g., Mono.subscribeOn() & 
Schedulers.single()



3

Key Concurrency 
Operators in the Mono Class



4

• The subscribeOn() operator

• Run subscribe(), onSubscribe(), 
& request() on the specified 
Scheduler worker

Key Concurrency Operators in the Mono Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#subscribeOn

Mono<T> subscribeOn(Scheduler 

scheduler)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#subscribeOn-reactor.core.scheduler.Scheduler-


5

• The subscribeOn() operator

• Run subscribe(), onSubscribe(), 
& request() on the specified 
Scheduler worker

• The scheduler param indicates
what thread to perform the 
operation on

Key Concurrency Operators in the Mono Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

Mono<T> subscribeOn(Scheduler 

scheduler)

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html


6

• The subscribeOn() operator

• Run subscribe(), onSubscribe(), 
& request() on the specified 
Scheduler worker

• The scheduler param indicates
what thread to perform the 
operation on

• Returns the Mono requesting 
async processing

Key Concurrency Operators in the Mono Class
Mono<T> subscribeOn(Scheduler 

scheduler)



7

• The subscribeOn() operator

• Run subscribe(), onSubscribe(), 
& request() on the specified 
Scheduler worker

• The semantics of subscribeOn() 
are a bit unusual

Key Concurrency Operators in the Mono Class



8

• The subscribeOn() operator

• Run subscribe(), onSubscribe(), 
& request() on the specified 
Scheduler worker

• The semantics of subscribeOn() 
are a bit unusual

• Placing this operator in a chain 
impacts the execution context 
of the onNext(), onError(), & 
onComplete() signals 

Key Concurrency Operators in the Mono Class
return Mono

.fromCallable(() -> BigFraction

.reduce(unreducedFrac))

.subscribeOn(Schedulers.single())

)

.doOnSuccess(bf -> logBigFraction

(unreducedFrac, bf, sb))

.map(BigFraction::toMixedString)

.doOnSuccess(bf -> 

displayBigFraction(bf, sb))

.then();

See Reactive/mono/ex2/src/main/java/MonoEx.java

Run all this processing 
in a background thread

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex2/src/main/java/MonoEx.java


9

• The subscribeOn() operator

• Run subscribe(), onSubscribe(), 
& request() on the specified 
Scheduler worker

• The semantics of subscribeOn() 
are a bit unusual

• Placing this operator in a chain 
impacts the execution context 
of the onNext(), onError(), & 
onComplete() signals 

Key Concurrency Operators in the Mono Class
return Mono

.fromCallable(() -> BigFraction

.reduce(unreducedFrac))

.doOnSuccess(bf -> logBigFraction

(unreducedFrac, bf, sb))

.map(BigFraction::toMixedString)

.doOnSuccess(bf -> 

displayBigFraction(bf, sb))

.subscribeOn(Schedulers.single())

.then();

subscribeOn() can appear later in 
the chain & have the same effect



10See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#publishOn

• The subscribeOn() operator

• Run subscribe(), onSubscribe(), 
& request() on the specified 
Scheduler worker

• The semantics of subscribeOn() 
are a bit unusual

• Placing this operator in a chain 
impacts the execution context 
of the onNext(), onError(), & 
onComplete() signals 

• However, if a publishOn() operator appears later in the chain that will
change the threading context where the rest of the operators in the 
chain below it execute (publishOn() can appear multiple times)

Key Concurrency Operators in the Mono Class

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#publishOn-reactor.core.scheduler.Scheduler-


11

• The subscribeOn() operator

• Run subscribe(), onSubscribe(), 
& request() on the specified 
Scheduler worker

• The semantics of subscribeOn() 
are a bit unusual

• RxJava’s Single.subscribeOn()
works the same way

Key Concurrency Operators in the Mono Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#subscribeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#subscribeOn-io.reactivex.rxjava3.core.Scheduler-


12

Key Scheduler 
Operators in the Mono Class



13

• The Schedulers.single() operator

• Hosts a single-threaded Executor 
Service-based worker that runs 
concurrently wrt the caller

Key Scheduler Operators in the Mono Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#single

static Scheduler single()

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#single--


14

• The Schedulers.single() operator

• Hosts a single-threaded Executor 
Service-based worker that runs 
concurrently wrt the caller

Key Scheduler Operators in the Mono Class
static Scheduler single()

return Mono

.fromCallable(() -> BigFraction.reduce(unreducedFrac))

.subscribeOn(Schedulers.single())

.doOnSuccess(bf -> logBigFraction(unreducedFrac, bf, sb))

.map(BigFraction::toMixedString)

.doOnSuccess(bf -> displayBigFraction(bf, sb))

.then();

See Reactive/mono/ex2/src/main/java/MonoEx.java

Run all this processing in a 
single background thread

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex2/src/main/java/MonoEx.java


15

• The Schedulers.single() operator

• Hosts a single-threaded Executor 
Service-based worker that runs 
concurrently wrt the caller

• Optimized for low-latency calls 
that all run in one (& only one) 
background thread

Key Scheduler Operators in the Mono Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html


16

• The Schedulers.single() operator

• Hosts a single-threaded Executor 
Service-based worker that runs 
concurrently wrt the caller

• Optimized for low-latency calls 
that all run in one (& only one) 
background thread

• Implemented via a “daemon thread” 

• i.e., won’t prevent the app from 
exiting even if its work isn’t done

Key Scheduler Operators in the Mono Class

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread


17

• The Schedulers.single() operator

• Hosts a single-threaded Executor 
Service-based worker that runs 
concurrently wrt the caller

• RxJava’s Schedulers.single() works
the same way

Key Scheduler Operators in the Mono Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#single

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#single--


18

End of Key Concurrency 
& Scheduler Operators in 
the Mono Class (Part 1)


