Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

* U nderSta nd key CI a Sses i n This is the timeline of the Flux
the Project Reactor API Time flows from left to right

This Flux is the result
of the transformation

M O n O This is the optional item

emitted by the Mono This vertical line indicates that
the Mono has completed successfully

This is the timeline of the Mono |
Time flows from left to right l >
f ' These dotted lines and this box
indicate that a transformation
is being applied to the Mono
operator (... )
The text inside the box shows

the nature of the transformation

This Mono is the result *

of the transformation

>

If for some reason the Mono terminates
abnormally, with an error, the vertical
line is replaced by an X

. ) This vertical line indicates that
These are the items emitted by the Flux the Flux has completed successfully

OO0+

4 \ J \ 4 These dotted lines and this box
indicate that a transformation
is being applied to the Flux

operator (...)
The text inside the box shows

the nature of the transformation

----

A
O—0OX%—»
If for some reason the Flux terminates
abnormally, with an error, the vertical

FI ux line is replaced by an X




Key Classes in the
Project Reactor API




Key Classes in the Project Reactor API

* There are two key classes

in the Project Reactor API
1
®@
NN




Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

- Mono

« Completes successfully or with

failure, may or may not emit a
single value

Class Mono<T>

java.lang.Object

reactor.core.publisher.Mono<T>

Type Parameters:

T - the type of the single value of this class

All Implemented Interfaces:

Publisher<T>, [ <T>

Direct Known Subclasses:

public abstract class Mono<T>
extends Object
implements her<T>

A Reactive Streams Publisher with basic rx operators that completes successfully by
emitting an element, or with an error.

The recommended way to learn about the AP| and discover new operators is through
the reference documentation, rather than through this javadoc (as opposed to learning
more about individual operators). See the "which operator do | need?" appendix.

See

projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

Key Classes in the Project Reactor API

* There are two key classes BigFraction unreducedFraction =
in the Project Reactor API makeBigFraction(...);
 Mono
Mono
« Completes successfully or with .fromCallable(() -> BigFraction
failure, may or may not emit a .reduce (unreducedFraction) )
single value .subscribeOn

(Schedulers.single())
.map (result ->
result. toMixedString())
.doOnSuccess (result ->
System.out.println
("big fraction = "
+ result + "\n"));

 Similar to a Java Completable
Future or an async Optional<T>

See stackoverflow.com/questions/54866391/mono-vs-completablefuture



https://stackoverflow.com/questions/54866391/mono-vs-completablefuture

Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

- Mono
« Completes successfully or with O —>
failure, may or may not emit a ; ;
single value v v
operator (... )
« Can be documented via a Va >

“marble diagram”

See medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5



mailto:medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

« Mono

« Completes successfully or with
failure, may or may not emit a
single value

« Can be documented via a
“marble diagram”

This is the timeline of a Mono,

where time flows from left to right

\

Y |
bt —

v \

operator (... )

X -




Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

« Mono

This is the optional item emitted by the Mono

N\

« Completes successfully or with O —>

failure, may or may not emit a

single value

« Can be documented via a
“marble diagram”

v \

operator (... )

X -




Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API These dotted lines & this box indicate that a

transformation is being applied to the Mono

« Mono

« Completes successfully or with \ O } >
failure, may or may not emit a \ g ;
single value v v

operator (... )
« Can be documented via a Vs \ >
“marble diagram” \

The text inside the box indicates
the type of transformation

10



Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

« Mono

« Completes successfully or with
failure, may or may not emit a
single value

« Can be documented via a
“marble diagram”

A .

v \

operator (... )

.« .
X\

This Mono is the result
of the transformation

11




Key Classes in the Project Reactor API

* There are two key classes

in the Project Reactor API This vertical line indicates the

Mono completed successfully

« Mono \

« Completes successfully or with O —>
failure, may or may not emit a g g
single value v v

operator (... )
« Can be documented via a )'( >

“marble diagram”

12



Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

« Mono
« Completes successfully or with O —>
failure, may or may not emit a ; ;
single value v v
operator (... )
« Can be documented via a )'( >
“marble diagram” \

If the Mono terminates abnormally
the vertical line is replaced by an X

13



Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

« Mono

« Completes successfully or with
failure, may or may not emit a
single value

* Provides a wide range of
operators

Factory method operators
Transforming operators
Action operators

Concurrency & scheduler
operators

Combining operators
Suppressing operators
Blocking operators
etc.

14



Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

* Flux

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure

Class Flux<T>

java.lang.Object
reactor.core.publisher.Flux<T>

Type Parameters:

T - the element type of this Reactive Streams Publisher

All Implemented Interfaces:

Publisher<T>, F <T>

Direct Known Subclasses:

public abstract class Flux<T>
extends Object
implements <T>

A Reactive Streams Publisher with rx operators that emits 0 to N elements, and then
completes (successfully or with an error).

The recommended way to learn about the APl and discover new operators is through
the reference documentation, rather than through this javadoc (as opposed to learning
more about individual operators). See the "which operator do | need?" appendix.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html



https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Classes in the Project Reactor API

* There are two key classes Flux

in the Project Reactor API

* Flux

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure

 Similar to an async Java stream

* i.e., completable futures used
with a Java stream

.Create

(bigFractionEmitter)

.take (sMAX FRACTIONS)
.flatMap (unreducedFraction ->

reduceAndMultiplyFraction
(unreducedFraction,
Schedulers.parallel()))

.collectlList ()
.flatMap (1ist ->

BigFractionUtils
.sortAndPrintList
(list, sb));

16



Key Classes in the Project Reactor API

* There are two key classes Publisher Subscriber
in the Project Reactor API

request(3)
onNext()
onNext()

onNext()

* Flux

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure

00000
A
L A 4
000

» Supports backpressure

« The subscriber indicates to the
publisher how much data it can
consume

See jstobigdata.com/java/backpressure-in-project-reactor



https://jstobigdata.com/java/backpressure-in-project-reactor/

Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

* Flux O O <>_|_>

« Emits an indefinite # of events
(0 to infinite) & may complete v v v Vv
successfully or w/failure operator (...)

P
O—O0O—XK—

e Can also be documented via a
marble diagram

See medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5



mailto:medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

Key Classes in the Project Reactor API

* There are two key classes

' ' s is the timeline of a Fi
in the Project Reactor API This Is the timeline of a Flux,

where time flows from left to right

« Emits an indefinite # of events
(0 to infinite) & may complete v v v Vv
successfully or w/failure operator (...)

* Flux \ OOQ_l_'

PN R
@—0O—X -
» Can also be documented via a
marble diagram

19



Key Classes in the Project Reactor API

* There are two key classes

in the Project Reactor API These are the items emitted by the Flux

oo ot

« Emits an indefinite # of events
(0 to infinite) & may complete v v v Vv
successfully or w/failure operator (...)

PN R
@—0O—X -
» Can also be documented via a
marble diagram

20



Key Classes in the Project Reactor API

* There are two key classes

in the Project Reactor API These dotted lines & this box indicate that a
transformation is being applied to the Flux

* Flux
« Emits an indefinite # of events 5 5 5 5
(0 to infinite) & may complete v v v Vv
successfully or w/failure operator (...)

 Can also be documented via a
marble diagram The text inside the box indicates
the type of transformation

21



Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

« Emits an indefinite # of events

(0 to infinite) & may complete v v v Vv
successfully or w/failure operator (...)
L &
Q—O0O—XK >
« Can also be documented via a \

marble diagram These Flux elements are the
result of the transformation

22



Key Classes in the Project Reactor API

* There are two key classes

in the Project Reactor API This vertical line indicates the

Flux completed successfully

* Flux 2 W @_,
b i A
v Y v v

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure operator (...)

PN R
@—0O—X -
» Can also be documented via a
marble diagram

23



Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

« Emits an indefinite # of events

(0 to infinite) & may complete v v v v
successfully or w/failure operator (...)
L &
@—0O—XK N >
« Can also be documented via a

If the Flux terminates abnormally

marble diagram
J the vertical line is replaced by an X

24



Key Classes in the Project Reactor API

* There are two key classes
in the Project Reactor API

* Flux

« Emits an indefinite # of events
(0 to infinite) & may complete
successfully or w/failure

 Provides a wide range of operators

Factory method operators
Transforming operators
Action operators

Concurrency & scheduler
operators

Combining operators
Terminal operators
Suppressing operators
Blocking operators
etc.

25



End of Understanding
Key Classes in the
Project Reactor API

26



