
Understanding Key Classes

in the Project Reactor API

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand key classes in 

the Project Reactor API

Mono
Flux



3

Key Classes in the 
Project Reactor API



4

• There are two key classes 
in the Project Reactor API

Key Classes in the Project Reactor API



5

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

Key Classes in the Project Reactor API

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html


6

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

Key Classes in the Project Reactor API

See stackoverflow.com/questions/54866391/mono-vs-completablefuture

BigFraction unreducedFraction =

makeBigFraction(...);

Mono

.fromCallable(() -> BigFraction

.reduce(unreducedFraction))

.subscribeOn

(Schedulers.single())

.map(result -> 

result.toMixedString())

.doOnSuccess(result -> 

System.out.println

("big fraction = " 

+ result + "\n"));

https://stackoverflow.com/questions/54866391/mono-vs-completablefuture


7

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

• Can be documented via a
“marble diagram”

Key Classes in the Project Reactor API

See medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

mailto:medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5


8

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

• Can be documented via a
“marble diagram”

Key Classes in the Project Reactor API

This is the timeline of a Mono, 
where time flows from left to right



9

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

• Can be documented via a
“marble diagram”

Key Classes in the Project Reactor API

This is the optional item emitted by the Mono



10

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

• Can be documented via a
“marble diagram”

Key Classes in the Project Reactor API

These dotted lines & this box indicate that a 
transformation is being applied to the Mono

The text inside the box indicates 
the type of transformation



11

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

• Can be documented via a
“marble diagram”

Key Classes in the Project Reactor API

This Mono is the result 
of the transformation



12

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

• Can be documented via a
“marble diagram”

Key Classes in the Project Reactor API

This vertical line indicates the 
Mono completed successfully



13

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

• Can be documented via a
“marble diagram”

Key Classes in the Project Reactor API

If the Mono terminates abnormally 
the vertical line is replaced by an X



14

• There are two key classes 
in the Project Reactor API

• Mono

• Completes successfully or with 
failure, may or may not emit a 
single value

• Similar to a Java Completable 
Future or an async Optional<T>

• Can be documented via a
“marble diagram”

• Provides a wide range of 
operators

Key Classes in the Project Reactor API
• Factory method operators

• Transforming operators

• Action operators

• Concurrency & scheduler 
operators

• Combining operators

• Suppressing operators

• Blocking operators

• etc.



15

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

Key Classes in the Project Reactor API

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


16

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• i.e., completable futures used 
with a Java stream

Key Classes in the Project Reactor API
Flux

.create

(bigFractionEmitter)

.take(sMAX_FRACTIONS)

.flatMap(unreducedFraction ->

reduceAndMultiplyFraction

(unreducedFraction,

Schedulers.parallel()))

.collectList()

.flatMap(list ->

BigFractionUtils

.sortAndPrintList

(list, sb));



17

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• The subscriber indicates to the 
publisher how much data it can 
consume 

Key Classes in the Project Reactor API

See jstobigdata.com/java/backpressure-in-project-reactor

https://jstobigdata.com/java/backpressure-in-project-reactor/


18

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• Can also be documented via a 
marble diagram

Key Classes in the Project Reactor API

See medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

mailto:medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5


19

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• Can also be documented via a 
marble diagram

Key Classes in the Project Reactor API

This is the timeline of a Flux, 
where time flows from left to right



20

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• Can also be documented via a 
marble diagram

Key Classes in the Project Reactor API

These are the items emitted by the Flux



21

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• Can also be documented via a 
marble diagram

Key Classes in the Project Reactor API

These dotted lines & this box indicate that a 
transformation is being applied to the Flux

The text inside the box indicates 
the type of transformation



22

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• Can also be documented via a 
marble diagram

Key Classes in the Project Reactor API

These Flux elements are the 
result of the transformation



23

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• Can also be documented via a 
marble diagram

Key Classes in the Project Reactor API

This vertical line indicates the 
Flux completed successfully



24

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• Can also be documented via a 
marble diagram

Key Classes in the Project Reactor API

If the Flux terminates abnormally 
the vertical line is replaced by an X



25

• There are two key classes 
in the Project Reactor API

• Mono

• Flux

• Emits an indefinite # of events 
(0 to infinite) & may complete 
successfully or w/failure 

• Similar to an async Java stream

• Supports backpressure

• Can also be documented via a 
marble diagram

• Provides a wide range of operators

Key Classes in the Project Reactor API
• Factory method operators

• Transforming operators

• Action operators

• Concurrency & scheduler 
operators

• Combining operators

• Terminal operators

• Suppressing operators

• Blocking operators

• etc.



26

End of Understanding 
Key Classes in the 
Project Reactor API


