
Overview of Popular Implementations 

of the Java Reactive Streams API

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the key benefits & principles underlying the reactive 

programming paradigm

• Know the Java reactive streams API & popular implementations of this API

See www.baeldung.com/rx-java & projectreactor.io

http://www.baeldung.com/rx-java
https://projectreactor.io/


3

Popular Implementations 
of Java Reactive Streams



4

Popular Implementations of Java Reactive Streams
• The Java Flow API isn’t very useful by itself

Useless
Things



5

Popular Implementations of Java Reactive Streams
• The Java Flow API isn’t very useful by itself

• However, this API serves as an interoperable foundation implemented by 
other popular reactive programming frameworks

See github.com/ReactiveX/RxJava/wiki & projectreactor.io

https://github.com/ReactiveX/RxJava/wiki
https://projectreactor.io/


6

• Reactive streams implementations enable the insertion of event transformer 
operators between publishers & subscribers

Popular Implementations of Java Reactive Streams

Publishers Subscribers

Data processed by a reactive app moves thru an 
“assembly line” (pipeline) of transformer operators

See projectreactor.io/docs/core/milestone/reference/#_from_imperative_to_reactive_programming

https://projectreactor.io/docs/core/milestone/reference/#_from_imperative_to_reactive_programming


7

• Reactive streams implementations enable the insertion of event transformer 
operators between publishers & subscribers

Popular Implementations of Java Reactive Streams

Transformer operators are similar to 
aggregate operations in Java Streams

See docs.oracle.com/javase/tutorial/collections/streams

Aggregate operation (behavior f)

Aggregate operation (behavior g)

Input x

Output f(x)

Output g(f(x))

Aggregate operation (behavior h)

Output h(g(f(x)))

https://docs.oracle.com/javase/tutorial/collections/streams/


8

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

See www.nurkiewicz.com/2019/02/rxjava-vs-reactor.html

http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
http://www.nurkiewicz.com/2019/02/rxjava-vs-reactor.html


9

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

See github.com/ReactiveX/RxJava/wiki

http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://github.com/ReactiveX/RxJava/wiki


10See projectreactor.io

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

https://projectreactor.io/
http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


11See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


12See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/mono

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

static Mono<Void> testFractionReductionSync() {

... 

return Mono

.fromCallable(reduceFraction)

.map(convertToMixedString)

.doOnSuccess(printResult)

.then(); ...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/mono/
http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


13See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


14See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

static <T> Flux<T> generate(Supplier<T> supplier,

long count) {

return Flux

.create(sink -> {

LongStream.rangeClosed(1, count)

.forEach(i -> sink.next(supplier.get()));

sink.complete(); }); ...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux
http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


15See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


16See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

static Completable testFractionMultiplicationCallable2(){ ...

return Single

.fromCallable(call)

.subscribeOn(Schedulers.single())

.doOnSuccess(bigFraction -> printResult(bigFraction, sb));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single
http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


17See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


18

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Observable

Observable.range(1, sMAX_FRACTIONS)

.subscribe(__ -> emitter

.onNext(makeBigFraction(sRANDOM, false)),

t -> emitter.onComplete(),

emitter::onComplete);

http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Observable


19

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html


20

• Reactive streams programs rarely use Publisher, Subscriber, & Subscription 
interfaces directly, but instead use classes that implement those interfaces

Popular Implementations of Java Reactive Streams

RxJava Reactor Purpose

Completable N/A
Completes successfully or with failure, without emitting any 
value. Similar to Java CompletableFuture<Void>

Maybe<T> Mono<T>
Completes successfully or with failure, may or may not emit a 
single value. Similar to an asynchronous Optional<T>

Single<T> N/A Either complete successfully emitting exactly one item or fails.

Observable<T> N/A
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Does not support back-
pressure due to the nature of the source of events it represents.

Flowable<T> Flux<T>
Emits an indefinite number of events (zero to infinite), optionally 
completes successfully or with failure. Supports backpressure (the 
source can be slowed down when the consumer cannot keep up)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable

Flowable<Double> rateF = Flowable

.just("GBP:USA")

.parallel()

.runOn(Schedulers.from(ForkJoinPool.commonPool()))

.map(this::queryExchangeRateFor)

.sequential()

.timeout(2, TimeUnit.SECONDS, sDEFAULT_RATE_F);

http://reactivex.io/RxJava/javadoc/io/reactivex/Completable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Maybe.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Single.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable


21

End of Overview of Popular 
Implementations of the Java 

Reactive Streams API


