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Learning Objectives in this Lesson

« Understand how object-oriented, functional, & reactive streams programming
is applied in a case study that lists airline flights via various web apps
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Overview of the Flight Listing App (FLApp)

» The Flight Listing App (FLApp) case study showcases a
wide range of Java concurrency & parallelism frameworks
that synchronously & asynchronously communicate with
various Spring-based platforms to list airline flights
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Overview of the Flight Listing App (FLApp)

* FLApp provides a monolithic client-server architecture implemented via Spring
to sequentially list airline flights using objects within one process (which could
be accessed via a load balancer)
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See gitlab.com/Creasor/flights-monolithic



https://gitlab.com/Creasor/flights-monolithic

Overview of the Flight Listing App (FLApp)

« The monolithic implementation of FLApp uses sync two-way calls & Java
object-oriented programming features & functional sequential streams
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See docs.oracle.com/javase/tutorial/collections/streams



https://docs.oracle.com/javase/tutorial/collections/streams

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment
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See gitlab.com/Creasor/flights-microservices & gitlab.com/Creasor/flights-reactive-microservices



https://gitlab.com/Creasor/flights-microservices
https://gitlab.com/Creasor/flights-reactive-microservices

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

» Flight is a “front-end” app gateway ... .
that uses Eureka service discovery ! Microservice-based App '
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See www.baeldung.com/spring-cloud-netflix-eureka



http://www.baeldung.com/spring-cloud-netflix-eureka

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

» Flight is a “front-end” app gateway ... .
that uses Eureka service discovery ! Microservice-based App |
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See microservices.io/patterns/server-side-discovery.html



https://microservices.io/patterns/server-side-discovery.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway
\ 2) Discover

that uses Eureka service discovery
with back-end microservices u 3 Comnedt (— ]

Service Registry
(Eureka Server)

 Used to find & communicate 1) Register
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« Each back-end microservice
registers with a service registry

See microservices.io/patterns/service-registry.html



https://microservices.io/patterns/service-registry.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

* Flight is a “front-end” app gateway éﬁleableDiscoveryCIient
that uses Eureka service discovery  public class AirportApplication {

e Used to find & communicate public static void main(...) {
SpringApplication.run

with back-end microservices (AirportApplication.class,a) ;
N }

« Each back-end microservice server.port=0

registers With a service registry eureka.client.serviceUrl.defaultZone
=http://localhost:8761/eureka

« Performed decla ratively via spring.cloud.eureka.enabled=true
annotations & property files eureka.client.enabled=true

See microservices.io/patterns/service-registry.html



https://microservices.io/patterns/service-registry.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway List<String>

that uses Eureka service discovery getAirlineServices () {
return discoveryClient

.getServices ()

» The Flight app gateway can locate .stream ()

the microservices it uses by name
.filter(id -> id
. toLowerCase ()
.contains("airline"))

.collect(toList()) ;
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Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway Airport[] airports =

that uses Eureka service discovery restTemplate
.getForEntity ("http://"
+ AIRPORT
+ "/
+ AIRPORTS,
Airport|]
« RestTemplate performs sync calls _getBody () ; -class)

See springframework/web/client/RestTemplate.html



https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway Airport[] airports =

that uses Eureka service discovery restTemplate
.getForEntity ("http://"
+ AIRPORT
+ "/
+ AIRPORTS,
Airport|]
« RestTemplate performs sync calls .getBody () ; -class)

It uses Eureka to redirects HTTP
requests to the microservice

See microservice-registration-and-discovery-with-spring-cloud-and-netflix-s-eureka



https://spring.io/blog/2015/01/20/microservice-registration-and-discovery-with-spring-cloud-and-netflix-s-eureka

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway Airport[] airports =

that uses Eureka service discovery restTemplate
.getForEntity ("http://"
+ AIRPORT
+ "/
+ AIRPORTS,
Airport|]
« RestTemplate performs sync calls .getBody () ; -class)

 Load balancing can also be enabled!

See piotrminkowski.com/2020/05/13/a-deep-dive-into-spring-cloud-load-balancer



https://piotrminkowski.com/2020/05/13/a-deep-dive-into-spring-cloud-load-balancer

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway webClient

that uses Eureka service discovery .get()
.uri (baseUrl + AIRPORT
+ "/" 4+ AIRPORTS)
.retrieve ()
.bodyToFlux (Airport.class) ;

« WebClient performs async calls

See springframework/web/reactive/function/client/WebClient.html



https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/reactive/function/client/WebClient.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway webClient

that uses Eureka service discovery .get()
.uri (baseUrl + AIRPORT

+ "/" + AIRPORTS)
.retrieve ()
.bodyToFlux (Airport.class) ;

« WebClient performs async calls
« It also uses Eureka & load balanding

See spring.io/blog/2020/03/25/spring-tips-spring-cloud-loadbalancer



https://spring.io/blog/2020/03/25/spring-tips-spring-cloud-loadbalancer

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment
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Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

__________________________________________________

' Microservices App
* The “back-end” microservices [D ExchangeRate]
perform various tasks, e.g. 5 @) An-airine ]
- Return a list of all known / ; |
airports [ Flight . SWA-airline ]
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Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment
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Microservices App

° The \\back_endn m|CroserV|Ces E [D ExchangeRate] E
perform various tasks, e.g. | / D AA_airline ] i

« Return currency exchange rates N
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Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

__________________________________________________

Microservices App

° The \\back_endn mlcrOSEI’VICGS E [D ExchangeRate] E
perform various tasks, e.g. | / D AA_airline ] i

[ Flight . SWA-airline

» Return flight info for various _ s Q) - ]
airlines [ Alrport ] ;

___________________________________________________




Overview of the Flight Listing App (FLApp)

« The object-oriented implementation of FLApp uses sync two-way calls &
various Java concurrent Executor frameworks

* e.g., Java threads & the Java . .
executor framework Microservices App
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See docs.oracle.com/javase/tutorial/essential/concurrency



https://docs.oracle.com/javase/tutorial/essential/concurrency/

Overview of the Flight Listing App (FLApp)

The functional implementation of FLApp uses sync & async two-way calls &
various Java functional parallel & async programming frameworks

* e.g., Java parallel streems & .
completable futures frameworks

Parallel Streams Completable Futures
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See www.manning.com/books/modern-java-in-action



http://www.manning.com/books/modern-java-in-action

Overview of the Flight Listing App (FLApp)

« The reactive implementation of FLApp uses async two-way calls & various
Java reactive streams frameworks that support various concurrency models

» e.g., Project Reactor & RxJava ...
Reactive Streams - Microservices App
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See en.wikipedia.org/wiki/Reactive Streams



https://en.wikipedia.org/wiki/Reactive_Streams

Overview of the Flight Listing App (FLApp)

« The FLApp case study also showcases advanced GUI, persistence, & testing
frameworks & tools

« e.g.,, JPA, R2DBC, Android, & . .
mocking tools ! Microservices App |
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JPA @

Java Persistence API
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See spring.io/projects/spring-data-jpa, r2dbc.io, developer.android.com & mockk.io



https://spring.io/projects/spring-data-jpa
https://r2dbc.io/
https://developer.android.com/
https://mockk.io/

End of the Flight Listing
App (FLApp) Case Study
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