
The Flight Listing App (FLApp) Case Study

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand how object-oriented, functional, & reactive streams programming

is applied in a case study that lists airline flights via various web apps

Microservices App

Clients

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

3

Overview of the Flight
Listing App (FLApp)

4

Overview of the Flight Listing App (FLApp)
• The Flight Listing App (FLApp) case study showcases a

wide range of Java concurrency & parallelism frameworks
that synchronously & asynchronously communicate with
various Spring-based platforms to list airline flights

Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

5

ExchangeRate

Overview of the Flight Listing App (FLApp)
• FLApp provides a monolithic client-server architecture implemented via Spring

to sequentially list airline flights using objects within one process (which could
be accessed via a load balancer)

See gitlab.com/Creasor/flights-monolithic

Monolithic App

Flight

Airport

AA

SWA

…

ExchangeRate

Clients

Load

Balancer

https://gitlab.com/Creasor/flights-monolithic

6

Overview of the Flight Listing App (FLApp)
• The monolithic implementation of FLApp uses sync two-way calls & Java

object-oriented programming features & functional sequential streams

See docs.oracle.com/javase/tutorial/collections/streams

ExchangeRate

Monolithic App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

https://docs.oracle.com/javase/tutorial/collections/streams

7

Overview of the Flight Listing App (FLApp)
• Later FLApp versions list airline flights & related information via Spring

microservices that can run in separate processes in a cluster environment

See gitlab.com/Creasor/flights-microservices & gitlab.com/Creasor/flights-reactive-microservices

Microservice-based App

Clients

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

https://gitlab.com/Creasor/flights-microservices
https://gitlab.com/Creasor/flights-reactive-microservices

8

Overview of the Flight Listing App (FLApp)
• Later FLApp versions list airline flights & related information via Spring

microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

See www.baeldung.com/spring-cloud-netflix-eureka

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

Microservice-based App

http://www.baeldung.com/spring-cloud-netflix-eureka

9

Overview of the Flight Listing App (FLApp)
• Later FLApp versions list airline flights & related information via Spring

microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• Without hard-coding ports
& hostnames

See microservices.io/patterns/server-side-discovery.html

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

Microservice-based App

https://microservices.io/patterns/server-side-discovery.html

10

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• Without hard-coding ports
& hostnames

• Each back-end microservice
registers with a service registry

Overview of the Flight Listing App (FLApp)

See microservices.io/patterns/service-registry.html

https://microservices.io/patterns/service-registry.html

11

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• Without hard-coding ports
& hostnames

• Each back-end microservice
registers with a service registry

• Performed declaratively via
annotations & property files

Overview of the Flight Listing App (FLApp)

See microservices.io/patterns/service-registry.html

...

@EnableDiscoveryClient

public class AirportApplication {

public static void main(...) {

SpringApplication.run

(AirportApplication.class,a);

}

...

server.port=0

eureka.client.serviceUrl.defaultZone

=http://localhost:8761/eureka

spring.cloud.eureka.enabled=true

eureka.client.enabled=true

...

https://microservices.io/patterns/service-registry.html

12

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• The Flight app gateway can locate
the microservices it uses by name

Overview of the Flight Listing App (FLApp)

List<String>

getAirlineServices() {

return discoveryClient

.getServices()

.stream()

.filter(id -> id

.toLowerCase()

.contains("airline"))

.collect(toList());

13

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• The Flight app gateway can locate
the microservices it uses by name

• RestTemplate performs sync calls

Overview of the Flight Listing App (FLApp)

Airport[] airports =

restTemplate

.getForEntity("http://"

+ AIRPORT

+ "/"

+ AIRPORTS,

Airport[]

.class)

.getBody();

See springframework/web/client/RestTemplate.html

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

14

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• The Flight app gateway can locate
the microservices it uses by name

• RestTemplate performs sync calls

• It uses Eureka to redirects HTTP
requests to the microservice

Overview of the Flight Listing App (FLApp)

Airport[] airports =

restTemplate

.getForEntity("http://"

+ AIRPORT

+ "/"

+ AIRPORTS,

Airport[]

.class)

.getBody();

See microservice-registration-and-discovery-with-spring-cloud-and-netflix-s-eureka

https://spring.io/blog/2015/01/20/microservice-registration-and-discovery-with-spring-cloud-and-netflix-s-eureka

15

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• The Flight app gateway can locate
the microservices it uses by name

• RestTemplate performs sync calls

• It uses Eureka to redirects HTTP
requests to the microservice

• Load balancing can also be enabled!

Overview of the Flight Listing App (FLApp)

Airport[] airports =

restTemplate

.getForEntity("http://"

+ AIRPORT

+ "/"

+ AIRPORTS,

Airport[]

.class)

.getBody();

See piotrminkowski.com/2020/05/13/a-deep-dive-into-spring-cloud-load-balancer

https://piotrminkowski.com/2020/05/13/a-deep-dive-into-spring-cloud-load-balancer

16

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• The Flight app gateway can locate
the microservices it uses by name

• RestTemplate performs sync calls

• WebClient performs async calls

Overview of the Flight Listing App (FLApp)

See springframework/web/reactive/function/client/WebClient.html

webClient

.get()

.uri(baseUrl + AIRPORT

+ "/" + AIRPORTS)

.retrieve()

.bodyToFlux(Airport.class);

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/reactive/function/client/WebClient.html

17

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• Used to find & communicate
with back-end microservices

• The Flight app gateway can locate
the microservices it uses by name

• RestTemplate performs sync calls

• WebClient performs async calls

• It also uses Eureka & load balanding

Overview of the Flight Listing App (FLApp)

See spring.io/blog/2020/03/25/spring-tips-spring-cloud-loadbalancer

webClient

.get()

.uri(baseUrl + AIRPORT

+ "/" + AIRPORTS)

.retrieve()

.bodyToFlux(Airport.class);

https://spring.io/blog/2020/03/25/spring-tips-spring-cloud-loadbalancer

18

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• The “back-end” microservices
perform various tasks

Overview of the Flight Listing App (FLApp)

Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

19

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• The “back-end” microservices
perform various tasks, e.g.

• Return a list of all known
airports

Overview of the Flight Listing App (FLApp)

Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

20

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• The “back-end” microservices
perform various tasks, e.g.

• Return a list of all known
airports

• Return currency exchange rates

Overview of the Flight Listing App (FLApp)

Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

21

• Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

• Flight is a “front-end” app gateway
that uses Eureka service discovery

• The “back-end” microservices
perform various tasks, e.g.

• Return a list of all known
airports

• Return currency exchange rates

• Return flight info for various
airlines

Overview of the Flight Listing App (FLApp)

Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

22

Overview of the Flight Listing App (FLApp)
• The object-oriented implementation of FLApp uses sync two-way calls &

various Java concurrent Executor frameworks

• e.g., Java threads & the Java
executor framework

See docs.oracle.com/javase/tutorial/essential/concurrency

Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

https://docs.oracle.com/javase/tutorial/essential/concurrency/

23

Overview of the Flight Listing App (FLApp)
• The functional implementation of FLApp uses sync & async two-way calls &

various Java functional parallel & async programming frameworks

• e.g., Java parallel streams &
completable futures frameworks

See www.manning.com/books/modern-java-in-action

Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

http://www.manning.com/books/modern-java-in-action

24

Overview of the Flight Listing App (FLApp)
• The reactive implementation of FLApp uses async two-way calls & various

Java reactive streams frameworks that support various concurrency models

• e.g., Project Reactor & RxJava

See en.wikipedia.org/wiki/Reactive_Streams

Reactive Streams Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

https://en.wikipedia.org/wiki/Reactive_Streams

25

Overview of the Flight Listing App (FLApp)
• The FLApp case study also showcases advanced GUI, persistence, & testing

frameworks & tools

• e.g., JPA, R2DBC, Android, &
mocking tools

See spring.io/projects/spring-data-jpa, r2dbc.io, developer.android.com & mockk.io

Microservices App

Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

https://spring.io/projects/spring-data-jpa
https://r2dbc.io/
https://developer.android.com/
https://mockk.io/

26

End of the Flight Listing
App (FLApp) Case Study

