The Flight Listing App (FLApp) Case Study

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbiit.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Understand how object-oriented, functional, & reactive streams programming
is applied in a case study that lists airline flights via various web apps

__

Microservices App

= | ! [ExchangeRate]
Book ¥ rvt fia e (B o A2 v Q owxw © o @ o . :

Overview of the Flight
Listing App (FLApp)

Overview of the Flight Listing App (FLApp)

» The Flight Listing App (FLApp) case study showcases a
wide range of Java concurrency & parallelism frameworks
that synchronously & asynchronously communicate with
various Spring-based platforms to list airline flights

Microservices App

| [ExchangeRateD i
1| AA-airline D Y E
i SWA-airline .

Overview of the Flight Listing App (FLApp)

* FLApp provides a monolithic client-server architecture implemented via Spring
to sequentially list airline flights using objects within one process (which could
be accessed via a load balancer)

f R

Monolithic App

i | D ExchangeRate
Book ¥ rv [e cr M veanes (O owcxkm (D) ruokrsmns @ o n

Clients

See gitlab.com/Creasor/flights-monolithic

https://gitlab.com/Creasor/flights-monolithic

Overview of the Flight Listing App (FLApp)

« The monolithic implementation of FLApp uses sync two-way calls & Java
object-oriented programming features & functional sequential streams

- Monolithic App
D ExchangeRate
™ D AA-airline
—>)JdVd
| S . - -
D Flight > . SWA-airline

— / Sp.

i Airport
.

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

__

| ! Microservice-based App

— | i [ExchangeRate]

See gitlab.com/Creasor/flights-microservices & gitlab.com/Creasor/flights-reactive-microservices

https://gitlab.com/Creasor/flights-microservices
https://gitlab.com/Creasor/flights-reactive-microservices

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

» Flight is a “front-end” app gateway
that uses Eureka service discovery ! Microservice-based App '

| [D ExchangeRate] i
/ D AA-airline]

See www.baeldung.com/spring-cloud-netflix-eureka

http://www.baeldung.com/spring-cloud-netflix-eureka

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

» Flight is a “front-end” app gateway
that uses Eureka service discovery ! Microservice-based App |

+ Used to find & communicate [D Exch

-]) angeRate]
with back-end microservices

AA-airline
« Without hard-coding ports / D

& hostnames [D Flight @) swa-airiine]

See microservices.io/patterns/server-side-discovery.html

https://microservices.io/patterns/server-side-discovery.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway
\ 2) Discover

that uses Eureka service discovery
with back-end microservices u 3 Comnedt (—]

Service Registry
(Eureka Server)

 Used to find & communicate 1) Register
Service X Service Y

(Eureka Client) J‘ nel... L‘t (Eureka Client)

. @#$"

« Each back-end microservice
registers with a service registry

See microservices.io/patterns/service-registry.html

https://microservices.io/patterns/service-registry.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

* Flight is a “front-end” app gateway éﬁleableDiscoveryCIient
that uses Eureka service discovery public class AirportApplication {

e Used to find & communicate public static void main(...) {
SpringApplication.run

with back-end microservices (AirportApplication.class,a) ;
N }

« Each back-end microservice server.port=0

registers With a service registry eureka.client.serviceUrl.defaultZone
=http://localhost:8761/eureka

« Performed decla ratively via spring.cloud.eureka.enabled=true
annotations & property files eureka.client.enabled=true

See microservices.io/patterns/service-registry.html

https://microservices.io/patterns/service-registry.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway List<String>

that uses Eureka service discovery getAirlineServices () {
return discoveryClient

.getServices ()

» The Flight app gateway can locate .stream ()

the microservices it uses by name
.filter(id -> id
. toLowerCase ()
.contains("airline"))

.collect(toList()) ;

12

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway Airport[] airports =

that uses Eureka service discovery restTemplate
.getForEntity ("http://"
+ AIRPORT
+ "/
+ AIRPORTS,
Airport|]
« RestTemplate performs sync calls _getBody () ; -class)

See springframework/web/client/RestTemplate.html

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway Airport[] airports =

that uses Eureka service discovery restTemplate
.getForEntity ("http://"
+ AIRPORT
+ "/
+ AIRPORTS,
Airport|]
« RestTemplate performs sync calls .getBody () ; -class)

It uses Eureka to redirects HTTP
requests to the microservice

See microservice-registration-and-discovery-with-spring-cloud-and-netflix-s-eureka

https://spring.io/blog/2015/01/20/microservice-registration-and-discovery-with-spring-cloud-and-netflix-s-eureka

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway Airport[] airports =

that uses Eureka service discovery restTemplate
.getForEntity ("http://"
+ AIRPORT
+ "/
+ AIRPORTS,
Airport|]
« RestTemplate performs sync calls .getBody () ; -class)

 Load balancing can also be enabled!

See piotrminkowski.com/2020/05/13/a-deep-dive-into-spring-cloud-load-balancer

https://piotrminkowski.com/2020/05/13/a-deep-dive-into-spring-cloud-load-balancer

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway webClient

that uses Eureka service discovery .get()
.uri (baseUrl + AIRPORT
+ "/" 4+ AIRPORTS)
.retrieve ()
.bodyToFlux (Airport.class) ;

« WebClient performs async calls

See springframework/web/reactive/function/client/WebClient.html

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/reactive/function/client/WebClient.html

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

 Flight is a “front-end” app gateway webClient

that uses Eureka service discovery .get()
.uri (baseUrl + AIRPORT

+ "/" + AIRPORTS)
.retrieve ()
.bodyToFlux (Airport.class) ;

« WebClient performs async calls
« It also uses Eureka & load balanding

See spring.io/blog/2020/03/25/spring-tips-spring-cloud-loadbalancer

https://spring.io/blog/2020/03/25/spring-tips-spring-cloud-loadbalancer

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

__

Microservices App

« The “back-end” microservices E [D ExchangeRate]
perform various tasks i — () Aairline

s |
[e @) swa-airline]
] :

[i Airport I G

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

__

' Microservices App
* The “back-end” microservices [D ExchangeRate]
perform various tasks, e.g. 5 @) An-airine]
- Return a list of all known / ; |
airports [Flight . SWA-airline]

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

__

Microservices App

° The \\back_endn m|CroserV|Ces E [D ExchangeRate] E
perform various tasks, e.g. | / D AA_airline] i

« Return currency exchange rates N

Overview of the Flight Listing App (FLApp)

 Later FLApp versions list airline flights & related information via Spring
microservices that can run in separate processes in a cluster environment

__

Microservices App

° The \\back_endn mlcrOSEI’VICGS E [D ExchangeRate] E
perform various tasks, e.g. | / D AA_airline] i

[Flight . SWA-airline

» Return flight info for various _ s Q) -]
airlines [Alrport] ;

Overview of the Flight Listing App (FLApp)

« The object-oriented implementation of FLApp uses sync two-way calls &
various Java concurrent Executor frameworks

* e.g., Java threads & the Java . .
executor framework Microservices App
Cached (Variable-sized) Fixed-sized

Thread Pool Thread Pool

-
T P

Deq Deq D
Sub-Ta \
Sub-Ta: ub-Ta:
b-Task, ub-Ta:
Work-stealing I \.
Thread Pool é ST A| I‘pO I‘t

—
il
Q
=3
~+
r I N\
-
>
L
=
S
(¢
H

W hoolof worker threaS2 e e e oo

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency/

Overview of the Flight Listing App (FLApp)

The functional implementation of FLApp uses sync & async two-way calls &
various Java functional parallel & async programming frameworks

* e.g., Java parallel streems & .
completable futures frameworks

Parallel Streams Completable Futures

HEEOEER.--O) joager = 8

__________________________ supplyAsync
(getstartPage())

i
[i/ X A28 ! L
| /imgNum\ = /page\ &} /i!?zl:::c\:ongrs’:::}\m:‘ E F||ght . SWA-airline

1 -
:l map(this::downloadImage) | (countImages (page))

[}

[}

1

1

[}

1

[}

[}

1

1 .thenApplyAsync
1 (crawlHyperLinks
[}

[}

[}

1

1

[}

[}

I

U

1 n 1 .thenApply (List: :size) (page))
R
1 1
:| flatMap(this::applyFilters) | XI j i G
1 " v LA 26
1 1" 1
i X i " /imgNum\ . thenCombine (/imgNum\ , AI r O rt .
' (imgNum, imgNum) ->
! | collect(toList)) I Integer: :sum) P

See www.manning.com/books/modern-java-in-action

http://www.manning.com/books/modern-java-in-action

Overview of the Flight Listing App (FLApp)

« The reactive implementation of FLApp uses async two-way calls & various
Java reactive streams frameworks that support various concurrency models

» e.g., Project Reactor & RxJava ...
Reactive Streams - Microservices App

@000+ | i
Y Y VYOV OV OVOVY ! ExchangeRate !
| observeOn(D) | 1 R !
! DAA-alrllne :

Q0 0@00O0 I : / :
map({o———bD}) i . 1 . g E

@ 0o e eoal-

subscribeOn(’)

@008 aeoaal-

observeOn(’)

'viiiiiii

See en.wikipedia.org/wiki/Reactive Streams

https://en.wikipedia.org/wiki/Reactive_Streams

Overview of the Flight Listing App (FLApp)

« The FLApp case study also showcases advanced GUI, persistence, & testing
frameworks & tools

« e.g.,, JPA, R2DBC, Android, & . .
mocking tools ! Microservices App |

[ExchangeRate]

— () A-airline]

JPA @

Java Persistence API

See spring.io/projects/spring-data-jpa, r2dbc.io, developer.android.com & mockk.io

https://spring.io/projects/spring-data-jpa
https://r2dbc.io/
https://developer.android.com/
https://mockk.io/

End of the Flight Listing
App (FLApp) Case Study

26

