
Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

Advanced Java CompletableFuture Features: 

Two Stage Completion Methods (Part 2)

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand advanced features

of completable futures, e.g.

• Factory methods initiate async 
computations

• Completion stage methods chain
together actions to perform async 
result processing & composition

• Method grouping

• Single stage methods

• Two stage methods (and)

• Two stage methods (or)

Exception 
methods

Completion stage methods

Factory 
methodsArbitrary-arity 

methods

Basic methods



3

Methods Triggered by 
Completion of Two Stages



4

• Methods triggered by completion 
of either of two previous stages

• acceptEither()

Methods Triggered by Completion of Either of Two Stages
CompletableFuture<Void> acceptEither

(CompletionStage<? Extends T>

other, 

Consumer<? super T> action) 

{ ... } 

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#acceptEither

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#acceptEither-java.util.concurrent.CompletionStage-java.util.function.Consumer-


5

• Methods triggered by completion 
of either of two previous stages

• acceptEither()

• Applies a consumer action
that handles either of the
previous stages' results

CompletableFuture<Void> acceptEither

(CompletionStage<? Extends T>

other, 

Consumer<? super T> action) 

{ ... } 

See en.wikipedia.org/wiki/Logical_disjunction

Methods Triggered by Completion of Either of Two Stages

https://en.wikipedia.org/wiki/Logical_disjunction


6

• Methods triggered by completion 
of either of two previous stages

• acceptEither()

• Applies a consumer action
that handles either of the
previous stages' results

• Two futures are used here:

• The future used to invoke acceptEither()

• The `other’ future passed to acceptEither()

CompletableFuture<Void> acceptEither

(CompletionStage<? Extends T>

other, 

Consumer<? super T> action) 

{ ... } 

See en.wikipedia.org/wiki/Logical_disjunction

Methods Triggered by Completion of Either of Two Stages

https://en.wikipedia.org/wiki/Logical_disjunction


7

• Methods triggered by completion 
of either of two previous stages

• acceptEither()

• Applies a consumer action
that handles either of the
previous stages' results

• Returns a future to Void 

CompletableFuture<Void> acceptEither

(CompletionStage<? Extends T>

other, 

Consumer<? super T> action) 

{ ... } 

Methods Triggered by Completion of Either of Two Stages

See www.baeldung.com/java-void-type

http://www.baeldung.com/java-void-type


8

• Methods triggered by completion 
of either of two previous stages

• acceptEither()

• Applies a consumer action
that handles either of the
previous stages' results

• Returns a future to Void 

• Often used at the end of a
chain of completion stages

CompletableFuture<List<BigFraction>> 

quickSortF = CompletableFuture

.supplyAsync(() -> 

quickSort(list));

CompletableFuture<List<BigFraction>> 

mergeSortF = CompletableFuture

.supplyAsync(() -> 

mergeSort(list));

Create two completable futures 
that will contain the results of 

sorting the list using two different 
algorithms in two different threads

Methods Triggered by Completion of Either of Two Stages



9

• Methods triggered by completion 
of either of two previous stages

• acceptEither()

• Applies a consumer action
that handles either of the
previous stages' results

• Returns a future to Void 

• Often used at the end of a
chain of completion stages

CompletableFuture<List<BigFraction>> 

quickSortF = CompletableFuture

.supplyAsync(() -> 

quickSort(list));

CompletableFuture<List<BigFraction>> 

mergeSortF = CompletableFuture

.supplyAsync(() -> 

mergeSort(list));

quickSortF.acceptEither

(mergeSortF, results -> results

.forEach(fraction ->

System.out.println

(fraction

.toMixedString())));

This method is invoked when either 
quickSortF or mergeSortF complete

Methods Triggered by Completion of Either of Two Stages



10

• Methods triggered by completion 
of either of two previous stages

• acceptEither()

• Applies a consumer action
that handles either of the
previous stages' results

• Returns a future to Void 

• Often used at the end of a
chain of completion stages

CompletableFuture<List<BigFraction>> 

quickSortF = CompletableFuture

.supplyAsync(() -> 

quickSort(list));

CompletableFuture<List<BigFraction>> 

mergeSortF = CompletableFuture

.supplyAsync(() -> 

mergeSort(list));

quickSortF.acceptEither

(mergeSortF, results -> results

.forEach(fraction ->

System.out.println

(fraction

.toMixedString())));

Printout sorted results from which 
ever sorting routine finished first

Methods Triggered by Completion of Either of Two Stages



11

• Methods triggered by completion 
of either of two previous stages

• acceptEither()

• Applies a consumer action
that handles either of the
previous stages' results

• Returns a future to Void 

• Often used at the end of a
chain of completion stages

CompletableFuture<List<BigFraction>> 

quickSortF = CompletableFuture

.supplyAsync(() -> 

quickSort(list));

CompletableFuture<List<BigFraction>> 

mergeSortF = CompletableFuture

.supplyAsync(() -> 

mergeSort(list));

quickSortF.acceptEither

(mergeSortF, results -> results

.forEach(fraction ->

System.out.println

(fraction

.toMixedString())));

acceptEither() does not cancel the second future after the first one completes

Methods Triggered by Completion of Either of Two Stages



12

End of Advanced Java 
CompletableFuture Features: 

Two Stage Completion 
Methods (Part 2)


