Two Stage GCompletion Methods (Part 1)

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhiit.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand advanced features Completion stage methods
of completable futures, e.q.

« Completion stage methods chain
together actions to perform async
result processing & composition

Exception
methods

Factory

« Two stage methods (and) methods

Arbitrary-arity
methods

Basic methods




Methods Triggered by
Completion of Both of
Two Stages

3



Methods Triggered by Completion of Both of Two Stages

 Methods triggered by Comp|etion CompletableFuture<U> thenCombine
of both of two previous stages (CompletionStage<? Extends U>

_ other,
« thenCombine() BiFunction<? super T,

? super U,
? extends V> £n)

See docs.orade.com/javase/8/docs/api/java/util/concurrent/ CompletableFuture.html#thenCombine



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenCombine-java.util.concurrent.CompletionStage-java.util.function.BiFunction-

Methods Triggered by Completion of Both of Two Stages

 Methods triggered by Comp|etion CompletableFuture<U> thenCombine
of both of two previous stages (CompletionStage<? Extends U>

. other,
» thenCombine() BiFunction<? super T,
 Applies a bifunction action to ? super U,
two previous stages’ results ? extends V> fn)

See en.wikipedia.org/wiki/Logical conjunction



https://en.wikipedia.org/wiki/Logical_conjunction

Methods Triggered by Completion of Both of Two Stages

 Methods triggered by Comp|etion CompletableFuture<U> thenCombine
of both of two previous stages (CompletionStage<? Extends U>

] other,
» thenCombine() BiFunction<? super T,
« Applies a bifunction action to ? super U,
two previous stages’ results ? extends V> fn)

« Two futures are used here: teee

» The future used to invoke thenCombine()
« The "other’ future passed to thenCombine()




Methods Triggered by Completion of Both of Two Stages

« Methods triggered by completion CompletableFuture<U> thenCombine
of both of two previous stages (CompletionStage<? Extends U>

_ other,
« thenCombine() BiFunction<? super T,

? super U,
? extends V> £n)

« Returns a future containing
the result of the action




Methods Triggered by Completion of Both of Two Stages

 Methods triggered by Comp|etion CompletableFuture<U> thenCombine

of both of two previous stages (CompletionStage<? Extends U>
other,

BiFunction<? super T,
? super U,
? extends V> £n)

« thenCombine()

« Returns a future containing
the result of the action

thenCombine() essentially performs a “reduction”




Methods Triggered by Completion of Both of Two Stages

« Methods triggered by completion CompletableFuture<BF> compFl =

of both of two previous stages CompletableFuture
] .supplyAsync(() ->
 thenCombine() /* multiply two BFs. */);

CompletableFuture<BF> compF2 =
CompletableFuture
.supplyAsync(() ->

/* divide two BFs. */);

» Used to “join” two paths

. F1
of asynchronous execution ~ °°"®

. thenCombine (compF2,
BigFraction: :add)

. thenAccept (System.out: :println) ;

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8



http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

Methods Triggered by Completion of Both of Two Stages

« Methods triggered by completion CompletableFuture<BF> compFl =

of both of two previous stages CompletableFuture
] .supplyAsync(() ->
« thenCombine() /* multiply two BFs. */);

CompletableFuture<BF> compF2 =
CompletableFuture
.supplyAsync(() ->

/* divide two BFs. */);

» Used to “join” two paths

; F1
of asynchronous execution / °"F

. thenCombine (compF2,
BigFraction: :add)

Asynchronously multiple
& divide two big fractions .thenAccept (System.out: :println) ;

10



Methods Triggered by Completion of Both of Two Stages

« Methods triggered by completion CompletableFuture<BF> compFl =

of both of two previous stages CompletableFuture
] .supplyAsync(() ->
 thenCombine() /* multiply two BFs. */);

CompletableFuture<BF> compF2 =
CompletableFuture
.supplyAsync(() ->
/* divide two BFs. */);
» Used to “join” two paths
of asynchronous execution ~ S°™PF?
. thenCombine (compF2,

thenCombine()s action is / BigFraction: :add)

triggered only after its two hena C(Svat e ireioy
associated futures complete - thenAccept (System.out: :println);

11



Methods Triggered by Completion of Both of Two Stages

« Methods triggered by completion CompletableFuture<BF> compFl =

of both of two previous stages CompletableFuture
] .supplyAsync(() ->
 thenCombine() /* multiply two BFs. */);

CompletableFuture<BF> compF2 =
CompletableFuture
.supplyAsync(() ->

/* divide two BFs. */);

» Used to “join” two paths

; F1
of asynchronous execution ~ °°"®

. thenCombine (compF2,
BigFraction: :add)

Print out the results ——

.thenAccept (System.out: :println) ;

12



End of Advanced Java
CompletableFuture Features:
Two Stage Completion
Methods (Part 1)

13



