Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Recognize how Java completable futures | {
overcome limitations with Java futures

See earlier lesson on " Overview of the Java Completable Futures Framework”




Overcoming Limitations
with Java Futures




Overcoming Limitations with Java Futures

- The completable futures framework | "™
overcomes Java future limitations % : W7 ’

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ CompletableFuture.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

Overcoming Limitations with Java Futures

« The completable futures framework CompletableFuture<...> future =
overcomes Java future limitations new CompletableFuture<>() ;

« Can be completed explicitly

new Thread (() -> {

future.complete(...);

© _o
- }) .start(); \
R ¢ < - , After complete() is done
> >N calls to join() will unblock
you complete me /

System.out.println (future.join()) ;

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8



http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

Overcoming Limitations with Java Futures

« The completable futures framework CompletableFuture

overcomes Java future limitations . supplyAsync (reduceFraction)
. thenApply (BigFraction

: :toMixedString)
« Canbe chained fluently to handle . thenAccept(System.out: :println) ;

async results efficiently & cleanly /

The action of each "completion stage”
Is triggered when the previous stage’s
future completes asynchronously

See en.wikipedia.org/wiki/Fluent interface



https://en.wikipedia.org/wiki/Fluent_interface

Overcoming Limitations with Java Futures

« The completable futures framework CompletableFuture

overcomes Java future limitations . supplyAsync (reduceFraction)
. thenApply (BigFraction

_ : :toMixedString)
« (Canbe chained fluently to handle . thenAccept (System.out: :println) ;

async results efficiently & cleanly

» Async programming thus looks
more like sync programming!




Overcoming Limitations with Java Futures

« The completable futures framework CompletableFuture<List

overcomes Java future limitations <BigFraction>> futureTolList =
Stream

.generate (generator)
.limit (sMAX FRACTIONS)
.map (reduceFractions)
.collect (FuturesCollector

« (Can be triggered reactively/
.. . .toFutures()) ;
efficiently as a collection of .
futures w/out undue overhead futureTolList
u .thenAccept (printList) ;

Create a single future that will be triggered
when a group of other futures all complete

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8



http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

Overcoming Limitations with Java Futures

« The completable futures framework CompletableFuture<List

overcomes Java future limitations <BigFraction>> futureTolList =
Stream

.generate (generator)
.limit (sMAX FRACTIONS)
.map (reduceFractions)

« Can be triggered reactively/ -°°1lect(Ftt;riScoll(?<):tor
ICi ; .to res ;
efficiently as a collection of utu

et A q head futureTolist
utures w/out undue overhea .thenAccept (printList) ;

AN

Print out the results after all async
fraction reductions have completed




Overcoming Limitations with Java Futures

« The completable futures framework CompletableFuture<List

overcomes Java future limitations <BigFraction>> futureTolList =
Stream

.generate (generator)
.limit (sMAX FRACTIONS)
.map (reduceFractions)

e Canbe triggered reactively/ .collect (FuturesCollector

efficiently as a collection of - toFutures()) ;

¢ d head futureToList
utures w/out undue overhea _thenAccept (printList) ;

Java completable futures can also be
combined with Java sequential streams

10



End of How Java
Completable Futures Overcome
Limitations of Java Futures

11



