Recognize How Parallel Programs are Developed in Java

Douglas C. Schmidt <u>d.schmidt@vanderbilt.edu</u> www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

- Understand the meaning of key parallel programming concepts
- Know when to apply parallelism
- Recognize how Java supports parallel programming via object-oriented & functional frameworks

See www.dre.vanderbilt.edu/~schmidt/frameworks.html

- Recognize the parallelism frameworks supported by Java, e.g.
 - Fork-join pools
 - An object-oriented framework

See <u>docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html</u>

- Recognize the parallelism frameworks supported by Java, e.g.
 - Fork-join pools
 - Parallel streams
 - A synchronous functional framework

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

- Recognize the parallelism frameworks supported by Java, e.g.
 - Fork-join pools
 - Parallel streams
 - Completable futures
 - A reactive/asynchronous functional framework

Integer::sum)

See www.callicoder.com/java-8-completablefuture-tutorial

- Recognize the parallelism frameworks supported by Java, e.g.
 - Fork-join pools
 - Parallel streams
 - Completable futures
 - Reactive streams
 - An async programming paradigm concerned with processing data streams & propagation of changes

See <u>en.wikipedia.org/wiki/Reactive_Streams</u>

• Java 7 introduced the objectoriented fork-join framework

See www.infoq.com/interviews/doug-lea-fork-join

DataSource

- Java 7 introduced the objectoriented fork-join framework
 - Provides high performance, fine-grained task execution for data parallelism

See www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismInJava.pdf

- Java 7 introduced the objectoriented fork-join framework
 - Provides high performance, fine-grained task execution for data parallelism
 - Supports parallel programming by solving problems via "divide & conquer"

Result solve(Problem problem) {
 if (problem is small)
 directly solve problem
 else {

- a. split problem into independent parts
- b. fork new sub-tasks to solve each part
- c. join all sub-tasks
- d. compose result from sub-results

See en.wikipedia.org/wiki/Divide_and_conquer_algorithm

- Java 7 introduced the objectoriented fork-join framework
 - Provides high performance, fine-grained task execution for data parallelism
 - Supports parallel programming by solving problems via "divide & conquer"
 - Employs *work-stealing* to optimize multi-core processor performance

See gee.cs.oswego.edu/dl/papers/fj.pdf

• Java 8 added two new parallel functional programming frameworks

See www.ibm.com/developerworks/library/j-jvmc2

- Java 8 added two new parallel functional programming frameworks
 - **1.** Parallel streams

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

 Java 8 added two new parallel functional programming frameworks

1. Parallel streams

 Partitions a stream into multiple substreams that run independently & combine into a "reduced" result

 Java 8 added two new parallel functional programming frameworks

1. Parallel streams

- Partitions a stream into multiple substreams that run independently & combine into a "reduced" result
- Chunks of data in the substreams can be mapped to multiple threads (& cores)

 Java 8 added two new parallel functional programming frameworks

1. Parallel streams

- Partitions a stream into multiple substreams that run independently & combine into a "reduced" result
- Chunks of data in the substreams can be mapped to multiple threads (& cores)
- Leverages the common fork-join pool

See <u>dzone.com/articles/common-fork-join-pool-and-streams</u>

 Java 8 added two new parallel functional programming frameworks

1. Parallel streams

- Partitions a stream into multiple substreams that run independently & combine into a "reduced" result
- Chunks of data in the substreams can be mapped to multiple threads (& cores)
- Leverages the common fork-join pool

Parallel streams provides fine-grained data parallelism functional programming

 Java 8 added two new parallel functional Task 1 programming frameworks /page =supplyAsync **1. Parallel streams** (getStartPage()) 2. Completable futures Task 2 $/imgNum2 = /page^{8}$ /imgNum1\ = /page .thenComposeAsync .thenApplyAsync (crawlHyperLinks (countImages (page)) (page)) .thenApply(List::size)

/imgNum1\.thenCombine(/imgNum2\,
 (imgNum1, imgNum2) ->
 Integer::sum)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

Java 8 added two new parallel functional programming frameworks
 1. Parallel streams

2. Completable futures

 Supports dependent actions that trigger upon completion of async operations

/imgNum1\.thenCombine(/imgNum2\,
 (imgNum1, imgNum2) ->

Integer::sum)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

Java 8 added two new parallel functional programming frameworks
 1. Parallel streams

2. Completable futures

- Supports dependent actions
 that trigger upon completion of async operations
 - Async operations are a model of concurrent programming where the caller doesn't block waiting for callee to complete

/imgNum1\.thenCombine(/imgNum2\,
(imgNum1, imgNum2) ->
 Integer::sum)

See en.wikipedia.org/wiki/Asynchrony (computer_programming)

- Java 8 added two new parallel functional Task 1 programming frameworks /page =supplyAsync **1. Parallel streams** (getStartPage()) 2. Completable futures
 - Supports dependent actions that trigger upon completion of async operations
 - Async operations can run in parallel in thread pools

pool of worker thr Task 2 Task 3 /imgNum2\ = /page $/imgNum1 = /page^{8}$.thenComposeAsync .thenApplyAsync (crawlHyperLinks (countImages (page)) (page)) .thenApply(List::size)

Task 4

/imgNum1\.thenCombine(/imgNum2\, (imgNum1, imgNum2) -> Integer::sum)

See www.nurkiewicz.com/2013/05/java-8-definitive-guide-to.html

- Java 8 added two new parallel functional Task 1 programming frameworks /page =supplyAsync Pool of worker the **1. Parallel streams** (getStartPage()) 2. Completable futures Task 2 Task 3 Supports dependent actions /imgNum2\ = /page that trigger upon completion $/imgNum1 = /page^{8}$.thenComposeAsync .thenApplyAsync of async operations (countImages (page))
 - Async operations can run in parallel in thread pools
 - Many types of thread pools can be applied here!

Integer::sum)

 Java 8 added two new parallel functional programming frameworks

1. Parallel streams

2. Completable futures

- Supports dependent actions that trigger upon completion of async operations
- Async operations can run in parallel in thread pools

Java completable futures & streams can be combined to good effects!!

• Java 9 added support for reactive streams via the "Flow" API

See <u>www.reactive-streams.org</u>

- Java 9 added support for reactive streams via the "Flow" API
 - Implements a stream-oriented pub/sub framework via two patterns

See javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber

- Java 9 added support for reactive streams via the "Flow" API
 - Implements a stream-oriented pub/sub framework via two patterns

See en.wikipedia.org/wiki/Iterator_pattern

- Java 9 added support for reactive streams via the "Flow" API
 - Implements a stream-oriented pub/sub framework via two patterns

See en.wikipedia.org/wiki/Observer_pattern

• Popular reactive streams implementations include RxJava & Project Reactor

See www.baeldung.com/rx-java & projectreactor.io

• All these Java frameworks can often eliminate the use of synchronization or explicit threading when developing parallel apps!

Alleviates many accidental & inherent complexities of parallel programming

 Java parallel streams & completable future functional frameworks use the object-oriented fork-join framework by default

See www.oracle.com/technetwork/articles/java/fork-join-422606.html

End of Recognize How Parallel Programs Are Developed in Java