
Overview of Parallel

Programming Concepts

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the meaning of key parallel programming concepts

join join join join

Sub-Task1.1 Sub-Task1.2 Sub-Task2.1 Sub-Task2.2

fork fork forkfork

join join

join

Sub-Task1 Sub-Task2

forkfork

Task

See en.wikipedia.org/wiki/Parallel_computing

https://en.wikipedia.org/wiki/Parallel_computing

3

• Understand the meaning of key parallel programming concepts

• Know when to apply parallelism

Learning Objectives in this Part of the Lesson

4

An Overview of
Parallel Programming

5See www.jstatsoft.org/article/view/v040i01/v40i01.pdf

An Overview of Parallel Programming
• Parallelism is a form of computing that

performs several steps on multiple
processors or processor cores

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

http://www.jstatsoft.org/article/view/v040i01/v40i01.pdf

6

• Parallelism is a form of computing that
performs several steps on multiple
processors or processor cores, i.e.

• Split – partition a task
into sub-tasks

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

Ideally sub-tasks are split efficiently & evenly

An Overview of Parallel Programming

7

• Parallelism is a form of computing that
performs several steps on multiple
processors or processor cores, i.e.

• Split – partition a task
into sub-tasks

• Apply – Run independent
sub-tasks in parallel

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

join join

join

Each sub-task runs sequentially, but together they run in parallel

An Overview of Parallel Programming

8

• Parallelism is a form of computing that
performs several steps on multiple
processors or processor cores, i.e.

• Split – partition a task
into sub-tasks

• Apply – Run independent
sub-tasks in parallel

• Combine – Merge the sub-
results from sub-tasks into
a single “reduced” result

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

An Overview of Parallel Programming

9

• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine
results

An Overview of Parallel Programming

10

• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine
results

• Parallelism can thus be viewed as an
optimization to improve performance

See developer.ibm.com/articles/j-java-streams-4-brian-goetz

An Overview of Parallel Programming

https://developer.ibm.com/articles/j-java-streams-4-brian-goetz/

11

• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine
results

• Parallelism can thus be viewed as an
optimization to improve performance

• e.g., throughput, scalability, & latency

See en.wikipedia.org/wiki/Up_to_eleven

An Overview of Parallel Programming

https://en.wikipedia.org/wiki/Up_to_eleven

12

When to Apply Parallelism

13

When to Apply Parallelism

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

Process
sequentially

• Parallelism works best under certain
conditions

14

• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have little/no
dependency or need for communication between

tasks or for sharing results between them

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

Process
sequentially

When to Apply Parallelism

http://en.wikipedia.org/wiki/Embarrassingly_parallel

15

• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

• When there’s lots of data
& processing to perform

N
hilo

lo

hi

Q

Ideal

See on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

• N is the # of data elements to process per thread

• Q quantifies how CPU-intensive the processing is

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

Process
sequentially

When to Apply Parallelism

https://on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

16See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

Process
sequentially

• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

• When there’s lots of data
& processing to perform

• When threads neither block
nor share mutable state

When to Apply Parallelism

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

17

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

Process
sequentially

• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

• When there’s lots of data
& processing to perform

• When threads neither block
nor share mutable state

• Hence Java’s “fork-join”
& “work-stealing” foci

See en.wikipedia.org/wiki/Fork-join_model & en.wikipedia.org/wiki/Work_stealing

When to Apply Parallelism

https://en.wikipedia.org/wiki/Fork%E2%80%93join_model
https://en.wikipedia.org/wiki/Work_stealing

18

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

Process
sequentially

• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

• When there’s lots of data
& processing to perform

• When threads neither block
nor share mutable state

• When there are many
cores and/or processors

When to Apply Parallelism

See en.wikipedia.org/wiki/Multi-core_processor & en.wikipedia.org/wiki/Multiprocessing

https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multiprocessing

19

End of Overview of Parallel
Programming Concepts

