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Learning Objectives in this Part of the Lesson
• Understand the meaning of key parallel programming concepts
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See en.wikipedia.org/wiki/Parallel_computing

https://en.wikipedia.org/wiki/Parallel_computing
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• Understand the meaning of key parallel programming concepts

• Know when to apply parallelism

Learning Objectives in this Part of the Lesson
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An Overview of 
Parallel Programming



5See www.jstatsoft.org/article/view/v040i01/v40i01.pdf

An Overview of Parallel Programming
• Parallelism is a form of computing that

performs several steps on multiple
processors or processor cores
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http://www.jstatsoft.org/article/view/v040i01/v40i01.pdf
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• Parallelism is a form of computing that
performs several steps on multiple
processors or processor cores, i.e.

• Split – partition a task 
into sub-tasks 
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Ideally sub-tasks are split efficiently & evenly

An Overview of Parallel Programming
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• Parallelism is a form of computing that
performs several steps on multiple
processors or processor cores, i.e.

• Split – partition a task 
into sub-tasks 

• Apply – Run independent 
sub-tasks in parallel

Process
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Each sub-task runs sequentially, but together they run in parallel

An Overview of Parallel Programming
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• Parallelism is a form of computing that
performs several steps on multiple
processors or processor cores, i.e.

• Split – partition a task 
into sub-tasks 

• Apply – Run independent 
sub-tasks in parallel

• Combine – Merge the sub-
results from sub-tasks into 
a single “reduced” result

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

An Overview of Parallel Programming
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• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine 
results

An Overview of Parallel Programming



10

• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine 
results

• Parallelism can thus be viewed as an
optimization to improve performance  

See developer.ibm.com/articles/j-java-streams-4-brian-goetz

An Overview of Parallel Programming

https://developer.ibm.com/articles/j-java-streams-4-brian-goetz/
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• A key goal of parallelism is to efficiently
partition tasks into sub-tasks & combine 
results

• Parallelism can thus be viewed as an
optimization to improve performance  

• e.g., throughput, scalability, & latency

See en.wikipedia.org/wiki/Up_to_eleven

An Overview of Parallel Programming

https://en.wikipedia.org/wiki/Up_to_eleven
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When to Apply Parallelism 
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When to Apply Parallelism
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• Parallelism works best under certain
conditions
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• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have little/no 
dependency or need for communication between 

tasks or for sharing results between them
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When to Apply Parallelism

http://en.wikipedia.org/wiki/Embarrassingly_parallel
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• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

• When there’s lots of data 
& processing to perform

N
hilo

lo

hi

Q

Ideal

See on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

• N is the # of data elements to process per thread

• Q quantifies how CPU-intensive the processing is
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When to Apply Parallelism

https://on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api
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• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

• When there’s lots of data 
& processing to perform

• When threads neither block
nor share mutable state

When to Apply Parallelism

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html
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join join
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• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

• When there’s lots of data 
& processing to perform

• When threads neither block
nor share mutable state

• Hence Java’s “fork-join” 
& “work-stealing” foci

See en.wikipedia.org/wiki/Fork-join_model & en.wikipedia.org/wiki/Work_stealing

When to Apply Parallelism

https://en.wikipedia.org/wiki/Fork%E2%80%93join_model
https://en.wikipedia.org/wiki/Work_stealing
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• Parallelism works best under certain
conditions, e.g.

• When tasks are independent

• When there’s lots of data 
& processing to perform

• When threads neither block
nor share mutable state

• When there are many
cores and/or processors

When to Apply Parallelism

See en.wikipedia.org/wiki/Multi-core_processor & en.wikipedia.org/wiki/Multiprocessing

https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multiprocessing
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End of Overview of Parallel 
Programming Concepts


