Douglas C. Schmidt
id.schmidt@Quanderhilt.edu
www.dre.vanderhiit.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<< Java Clags=>

Thread (® Thread
. Program Counter {}syield[}:uuid
 Recognize how Java supports SeunentThread() Thread
. Stack Native Stack @ sleep(long)-void
COﬂCUFI‘ent pI‘Ogl‘ammlng COnceptS & sleep(long.int)-void

@ Thread)
@ Thread{Runnable)
@ Thread(String)

@ start():void

\ =

\ — @ run():void
d & exit()void
\ @ interrupt():void
- . . - 5 .
Historically each Java Thread had its own unique Siner g;de'ig-;_ﬂbﬂn'jeﬂan
stack, registers, thread-specific storage, etc. isAlive():boolean

& setPriarity(int)-void

& getPriority()int

& join(long)-void
 join{long.int)-void
 join()-void

& setDaemon(boolean)void
o isDaemon()-boolean

Learning Objectives in this Part of the Lesson

» Recognize how Java supports
concurrent programming concepts

« Java threads are undergoing
significant changes as part of
Project Loom

1P0yeCE ILECN

See wiki.openjdk.java.net/display/loom/Main

https://wiki.openjdk.java.net/display/loom/Main

An Overview of Concurrent
Programming In Java

An Overview of Concurrent Programming in Java

« A Java Thread is an object

Class Thread

java.lang.Object
java.lang.Thread

All Implemented Interfaces:

Runnable

Direct Known Subclasses:
ForkJoinWorkerThread

public class Thread
extends Object
implements Runnable

A thread is a thread of execution in a program. The Java Virtual Machine allows an
application to have multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to
threads with lower priority. Each thread may or may not also be marked as a daemon.
When code running in some thread creates a new Thread object, the new thread has its
priority initially set equal to the priority of the creating thread, and is a daemon thread
if and only if the creating thread is a daemon.

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

An Overview of Concurrent Programming in Java

« A Java Thread is an object, e.qg. <<Java Class>>

. . Thread ® Thread
It contains methods & fields

Program Counter & yield()-void
& currentThread(): Thread

Stack Native Stack & sleep(long)-void
@'sleep(long.int)-void

@ Thread)
@ Thread{Runnable)
@ Thread(String)
Z
L

@ start():void
\\ @ run():void
& exit()void

\ VA @ interrupt():void

. . - . 5 .
Historically each Java Thread had its own unigue @interrupted()-boolean

) o @ isInterrupted()-boolean
stack, registers, thread-specific storage, etc. isAlive():boolean

& setPriarity(int)-void

& getPriority()int

& join(long)-void
 join{long.int)-void
 join()-void

& setDaemon(boolean)void
o isDaemon()-boolean

See blog.jamesdbloom.com/JVMInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

An Overview of Concurrent Programming in Java

« A Java Thread is an object, e.q.
« It contains methods & fields

Traditional Java Thread objects are
now called "platform threads’
whereas "virtual threads” are new
“lightweight” concurrency objects

Platform threads

Thread supports the creation of platform threads that are typically mapped 1:1 to kernel threads
scheduled by the operating system. Platform threads will usually have a large stack and other resources
that are maintained by the operating system. Platforms threads are suitable for executing all types of
tasks but may be a limited resource.

Platform threads are designated daemon or non-daemon threads. When the Java virtual machine starts
up, there is usually one non-daemon thread (the thread that typically calls the application's main
method). The Java virtual machine terminates when all started non-daemon threads have terminated.
Unstarted daemon threads do not prevent the Java virtual machine from terminating. The Java virtual
machine can also be terminated by invoking the Runtime.exit(int) method, in which case it will
terminate even if there are non-daemon threads still running.

In addition to the daemon status, platform threads have a thread priority and are members of a thread
group.

Platform threads get an automatically generated thread name by default.

Virtual threads

Thread also supports the creation of virtual threads. Virtual threads are typically user-mode threads
scheduled by the Java virtual machine rather than the operating system. Virtual threads will typically
require few resources and a single Java virtual machine may support millions of virtual threads. Virtual
threads are suitable for executing tasks that spend most of the time blocked, often waiting for I/O
operations to complete. Virtual threads are not intended for long running CPU intensive operations.

Virtual threads typically employ a small set of platform threads are use as carrier threads. Locking and
I/O operations are the scheduling points where a carrier thread is re-scheduled from one virtual thread
to another. Code executing in a virtual thread will usually not be aware of the underlying carrier thread,
and in particular, the currentThread() method, to obtain a reference to the current thread, will return
the Thread object for the virtual thread, not the underlying carrier thread.

See download.java.net/java/early access/loom/docs/api/java.base/java/lang/Thread.html

https://download.java.net/java/early_access/loom/docs/api/java.base/java/lang/Thread.html

An Overview of Concurrent Programming in Java

« A Java Thread is an object, e.q.

e It can also be in one of
various “states”

walt-time

States of Java "classic”
(platform) threads

Blocked

resource
obtained,

new MyThread() attempt to access

guarded resource

cond.notify(),

cond.notifyAll()

myThread.start()

run()

Runnable
run() method

Timed
Waitin myThread.sleep() returns
9 wait(timeout)

join(timeout)

cond.wait()

@

Terminated)

elapsed

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

An Overview of Concurrent Programming in Java

« A Java Thread is an object, e.q.
o

e It can also be in one of
various “states”

afterTer

/

States of Java
virtual threads

start—> NEW
start()
v fterYield()
= afterYie
S oannedO VIELDING parkPermit==true
PARKED
runContlnuatlonO terleIdo afterYleI d0 /
minate() unpark , :
RUNNING <—runCont|nuat|on0— RUNNABLE <— / \
afterTen:;mnateO Wait for afterYield() '/ \
signalAll() Call K0
> TErRMINATED if !parkPermit 1 PARKING < s 0 \‘
arkCarrierThread : /)
l Y/ 0 f Calls park() Calls unpark()
S, |
@ end / !
LockS rt
PINNED Calls parko ockSuppo I
/ |
sun.nio.ch _,'
NioSocketimpl SelChimpl KQueue T
ConsoleStreams DatagramChannellmpl

See www.youtube.com/watch?v=5brCaY31y1M

http://www.youtube.com/watch?v=5brCaY31y1M

An Overview of Concurrent Programming in Java
« Concurrent Java threads interact via shared objects and/or message passing

-~
% é send () é
‘\ 1

read ()

wr:Lte()
u\‘%

read ()

See docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

https://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

- Shared objects

« Synchronize concurrent operations on *édo é send ()
objects to ensure certain properties

write ()
a- ﬂ\ %
-> read ()

T J
Awaiting lock T 3
Lock acquired
e
A o _'Z
Running
Critical Section Lock released Thread

See en.wikipedia.org/wiki/Synchronization (computer science)

https://en.wikipedia.org/wiki/Synchronization_(computer_science)

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

- Shared objects 2 é é <
« Synchronize concurrent operations on g send () r
1 . . read()
objects to ensure certain properties, e.g. " recv)

« Mutual exclusion write ()/a\ §
i —
« Interactions between threads does read()

not corrupt shared mutable data

See en.wikipedia.org/wiki/Monitor (synchronization)#Mutual exclusion

https://en.wikipedia.org/wiki/Monitor_(synchronization)#Mutual_exclusion

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

- Shared objects

. . - % - %
» Synchronize concurrent operations on *é ‘\é send () 15

objects to

wri e()
i t ﬂ\ »é
hd COOI‘dIﬂatIOH read ()

 Operations occur in the right order, m——
at the right time, & under the right "N.;_ A ey
conditions

read ()

ensure certain properties, e.g.

~

See en.wiki

pedia.org/wiki/Monitor_(synchronization)#Condition_variables

https://en.wikipedia.org/wiki/Monitor_(synchronization)#Condition_variables

An Overview of Concurrent Programming in Java
« Concurrent Java threads interact via shared objects and/or message passing
- Shared objects (e)
éé send () éé

« Examples of Java synchronizers:

« Synchronized statements/methods

« Reentrant locks & intrinsic locks

» Atomic operations

« Semaphores

 Condition objects

« “Compare-and-swap” (CAS)
operations, e.g., in sun.misc.unsafe

See dzone.com/articles/the-java-synchronizers

https://dzone.com/articles/the-java-synchronizers

An Overview of Concurrent Programming in Java

« Concurrent Java threads interact via shared objects and/or message passing

 Message passing

« Send message(s) from producer
thread(s) to consumer thread(s)
via a thread-safe queue

Thread 1

-~
9% %é send ()
\

read ()

write ()
/B\ é
read ()

Thread 2

Put

BlockingQueue

Take

See en.wikipedia.org/wiki/Message passing

https://en.wikipedia.org/wiki/Message_passing

An Overview of Concurrent Programming in Java
« Concurrent Java threads interact via shared objects and/or message passing

~ R

eg ég send () jé

read ()

 Message passing

« Examples of Java thread-safe queues
 Array & linked blocking queues
* Priority blocking queue
« Synchronous queue
« Concurrent linked queue

See docs.oracle. com/Javase/tutorlaI/collectlons/ im :)Iementat|ons/c ueue. html

https://docs.oracle.com/javase/tutorial/collections/implementations/queue.html

An Overview of Concurrent
Programming Hazards

17

An Overview of Concurrent Programming Hazards

 Java shared objects & message passing
are designed to share resources safely Al
& avoid concurrency hazards

e f o

See en.wikipedia.org/wiki/Thread safety

https://en.wikipedia.org/wiki/Thread_safety

An Overview of Concurrent Programming Hazards

 Java shared objects & message passing 4
are designed to share resources safely
& avoid concurrency hazards, e.g.

» Race conditions weite”

« Race conditions occur when a =5
program depends upon the
sequence or timing of threads
for it to operate properly

J

Shared State

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

An Overview of Concurrent Programming Hazards

 Java shared objects & message passing 4 h
are designed to share resources safely
& avoid concurrency hazards, e.g.

Race conditions

« Race conditions occur when a =5
program depends upon the -~
sequence or timing of threads
for it to operate properly

J

- - . Shared State
This test program induces race conditions due

to lack of synchronization between producer &
consumer threads accessing a bounded queue

\

See github.com/douglascraigschmidt/Livel essons/tree/master/BuggyQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

An Overview of Concurrent Programmlng Hazards

 Java shared objects & message passing
are designed to share resources safely
& avoid concurrency hazards, e.g.

« Memory inconsistencies

« These errors occur when different
threads have inconsistent views of
what should be the same data

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

An Overview of Concurrent Programming Hazards

» Java shared objects & message passing class LoopMayNeverEnd ({
are designed to share resources safely

& avoid concurrency hazards, e.g.

« Memory inconsistencies

 These errors occur when different
threads have inconsistent views of

what should be the same data

boolean mDone = false;

void work () {
// Thread T, read
while (!'mDone) {
// do work

}
}

void stopWork () ({
mDone = true;
// Thread T, write

}

22

An Overview of Concurrent Programming Hazards

» Java shared objects & message passing class LoopMayNeverEnd ({
are designed to share resources safely

& avoid concurrency hazards, e.g.

« Memory inconsistencies

« These errors occur when different
threads have inconsistent views of

what should be the same data

boolean mDone = false;

void work () {
// Thread T, read
while (!'mDone) {
// do work

}
}

Unsynchronized &
mutable shared data

void stopWork () ({

mDone =

true;

// Thread T, write

}

23

An Overview of Concurrent Programming Hazards

» Java shared objects & message passing class LoopMayNeverEnd ({
are designed to share resources safely boolean mDone = false;

& avoid concurrency hazards, e.g.
void work () {

// Thread T, read

« Memory inconsistencies while (!mDone) {
- These errors occur when different \ /7 do work N
threads have inconsistent views of) T, may never stop, even
what should be the same data after T, sets mDone to true

void stopWork () ({
mDone = true;
// Thread T, write

}

24

An Overview of Concurrent Programming Hazards
 Java shared objects & message passing |_2

are designed to share resources safely
& avoid concurrency hazards, e.g. <<needs?_) 8' (\«owns»
 Deadlocks > T
« Occur when 2+ competing threads 2
are waiting for the other(s) to finish,

& thus none ever do (/

<<owns>> <<needs>>

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock

An Overview of Concurrent Programming Hazards
 Java shared objects & message passing |_2

are designed to share resources safely /
& avoid concurrency hazards, e.g. <<need5?_) ’P (\<<Owns>>
 Deadlocks > T
« Occur when 2+ competing threads 2
are waiting for the other(s) to finish,

& thus none ever do

< <owns>> <<needs>>
T, & T, will be stuck
/n a "deadly embrace”

See github.com/douglascraigschmidt/LiveLessons/tree/master/DeadlockQueue ‘

https://github.com/douglascraigschmidt/LiveLessons/tree/master/DeadlockQueue

End of Overview of How
Concurrent Programs are
Developed in Java

27

