
Overview of Concurrent

Programming Concepts

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

recv()send()

write()

read()

Learning Objectives in this Part of the Lesson
• Understand the meaning of key

concurrent programming concepts

UI thread

background threads

3

An Overview of
Sequential Programming

4

An Overview of Sequential Programming

See en.wikipedia.org/wiki/Sequential_algorithm

• Sequential programming is a form
of computing that executes the
same sequence of instructions &
always produces the same results

https://en.wikipedia.org/wiki/Sequential_algorithm

5

An Overview of Sequential Programming

See screenprism.com/insights/article/what-is-the-ludovico-technique-and-how-does-it-work

• Sequential programming is a form
of computing that executes the
same sequence of instructions &
always produces the same results

• i.e., execution is deterministic
(assuming no deliberate use
of randomness)

http://screenprism.com/insights/article/what-is-the-ludovico-technique-and-how-does-it-work

6

An Overview of Sequential Programming
• Sequential programs have two

characteristics

7

An Overview of Sequential Programming
• Sequential programs have two

characteristics:

• The textual order of statements
specifies their order of execution

See src/share/classes/java/util/ArrayList.java

public E get(int index) {

rangeCheck(index);

return elementData

(index);

}

e.g., the rangeCheck() method must be
called before the elementData() method

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java

8

An Overview of Sequential Programming
• Sequential programs have two

characteristics:

• The textual order of statements
specifies their order of execution

• Successive statements must
execute without any temporal
overlap visible to programmers
or programs

9

An Overview of Sequential Programming
• Sequential programs have two

characteristics:

• The textual order of statements
specifies their order of execution

• Successive statements must
execute without any temporal
overlap visible to programmers
or programs

• However, instructions can
be reordered transparently
to avoid pipeline stalls

See en.wikipedia.org/wiki/Instruction_scheduling

https://en.wikipedia.org/wiki/Instruction_scheduling

10

An Overview of
Concurrent Programming

11

An Overview of Concurrent Programming

See en.wikipedia.org/wiki/Concurrency_(computer_science)

• Concurrent programming is a form of computing where threads can run
simultaneously

https://en.wikipedia.org/wiki/Concurrency_(computer_science)

12

An Overview of Concurrent Programming
• Concurrent programming is a form of computing where threads can run

simultaneously

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

for (int i = 0; i < 5; i++)

new Thread(() ->

someComputation()).

start();

A thread is a unit of execution for
instruction streams that can run

concurrently on 1+ processor cores

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

13

An Overview of Concurrent Programming
• Concurrent programming is a form of computing where threads can run

simultaneously

See en.wikipedia.org/wiki/Single-core

Threads may be multiplexed over one
core, though this is increasingly rare..

for (int i = 0; i < 5; i++)

new Thread(() ->

someComputation()).

start();

https://en.wikipedia.org/wiki/Single-core

14

• Different executions of a concurrent program may produce different
instruction orderings

An Overview of Concurrent Programming

See en.wikipedia.org/wiki/Nondeterministic_algorithm

https://en.wikipedia.org/wiki/Nondeterministic_algorithm

15

• Different executions of a concurrent program may produce different
instruction orderings:

• The textual order of the source code
doesn’t define the order of execution

An Overview of Concurrent Programming

new Thread(() ->

computationA()).

start();

new Thread(() ->

computationB()).

start();

new Thread(() ->

computationC()).

start();computationA(), computationB(), &
computationC() can run in any order

after their threads start executing

16

• Different executions of a concurrent program may produce different
instruction orderings:

• The textual order of the source code
doesn’t define the order of execution

• Operations are permitted to overlap
in time across multiple cores

An Overview of Concurrent Programming

17

• Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s)

An Overview of Concurrent Programming

See developer.android.com/topic/performance/threads.html

UI
thread

background
threads

https://developer.android.com/topic/performance/threads.html

18

• Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g.

• Background thread(s) can block

An Overview of Concurrent Programming

See developer.android.com/training/multiple-threads/communicate-ui.html

UI
thread

background
threads

https://developer.android.com/training/multiple-threads/communicate-ui.html

19

• Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g.

• Background thread(s) can block

• The UI thread does not block

An Overview of Concurrent Programming

See developer.android.com/training/multiple-threads/communicate-ui.html

UI
thread

background
threads

https://developer.android.com/training/multiple-threads/communicate-ui.html

20

• Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g.

• Background thread(s) can block

• The UI thread does not block

• Any mutable state shared between
these threads must be protected
to avoid concurrency hazards

An Overview of Concurrent Programming

See upcoming lesson on “Overview of Concurrency in Java”

write()

read()

21

• Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g.

• Background thread(s) can block

• The UI thread does not block

• Any mutable state shared between
these threads must be protected
to avoid concurrency hazards

• Motivates the need for various
types of synchronizers

An Overview of Concurrent Programming

See upcoming lesson on “Overview of Java Synchronizers”

write()

read()

22

End of Overview of
Concurrent Programming

Concepts

