Douglas C. Schmidt
id.schmidt@Quanderhilt.edu
www.dre.vanderhiit.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the meaning of key

concurrent programming concepts

background threads
BN / \\ 1
—>2 ¢ /
sen?() ri() %é %é
A P /

read ()/
N
= wrlte&

-

UI thread

An Overview of
Sequential Programming

An Overview of Sequential Programming

« Sequential programming is a form g
of computing that executes the
same sequence of instructions & ‘
always produces the same results ¥

-

;\l;_\\\§\\v
NN

o)
)
V!
¥
z
7

See en.wikipedia.org/wiki/Sequential algorithm

https://en.wikipedia.org/wiki/Sequential_algorithm

An Overview of Sequential Programming

» Sequential programming is a form
of computing that executes the
same sequence of instructions &
always produces the same results

* i.e., execution is deterministic
(assuming no deliberate use
of randomness)

See screen

rism.com/insights/artidle/what-is-the-ludovico-technic

ue-and-how-does-it-work

http://screenprism.com/insights/article/what-is-the-ludovico-technique-and-how-does-it-work

An Overview of Sequential Programming

» Sequential programs have two ‘
I

characteristics

% /<
> - /
)

An Overview of Sequential Programming

» Sequential programs have two public E get(int index) {
characteristics: rangeCheck (index) ;

« The textual order of statements

o . . return elementData
specifies their order of execution

(1index) ;

e.g., the rangeCheck() method must be
called before the elementData() method

See src/share/classes/java/util/Arraylist.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java

An Overview of Sequential Programming
» Sequential programs have two

characteristics: | ‘ i ‘

« Successive statements must
execute without any temporal
overlap visible to programmers
or programs

An Overview of Sequential Programming

« Sequential programs have two » For the code sequence: - .
. g) _ a,b,c,d,e,and f
characteristics: a=b+c .
d=e-f ’

* Assuming loads have a latency of one clock cycle, the following

code or pipeline compiler schedule eliminates stalls:

° SucceSS|Ve Statements must Original E;de Wit;:f”SZ Scheduled code with no stalls:
execute without any temporal Tt —
. . Stall—> : ?
overlap visible to programmers DADD Ra,Rb,Rc LD Ree
SD Ra,a DADD Ra,Rb,Rc
or programs LD Re.e >< LD Rff
« However, instructions can Stall—co o e N
be reordered transparently SD Rd.d S Rid

to avoid pipeline stalls

See en.wikipedia.org/wiki/Instruction scheduling

https://en.wikipedia.org/wiki/Instruction_scheduling

An Overview of
Concurrent Programming

10

An Overview of Concurrent Programming

« Concurrent programming is a form of computing where threads can run

simultaneously

=
=& -

~

5

<

J

See en.wikipedia.org/wiki/Concurrency (computer science)

https://en.wikipedia.org/wiki/Concurrency_(computer_science)

An Overview of Concurrent Programming

« Concurrent programming is a form of computing where threads can run
simultaneously

for (int i = 0; 1 < 5; i++)
new Thread(() ->
someComputation()) .
start () ;

A thread is a unit of execution for

instruction streams that can run // z ;
concurrently on 1+ processor cores L L ¢ .

N

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

An Overview of Concurrent Programming

« Concurrent programming is a form of computing where threads can run

simultaneously

-
for (int i = 0; i < 5; i++) =5 =g
new Thread(() ->
someComputation()) .
start () ;

5

~

5
5

Threads may be multiplexed over one

core, though this is increasingly rare.. \f

See en.wikipedia.org/wiki/Single-core

https://en.wikipedia.org/wiki/Single-core

An Overview of Concurrent Programming

« Different executions of a concurrent program may produce different
instruction orderings

See en.wikipedia.org/wiki/Nondeterministic algorithm

https://en.wikipedia.org/wiki/Nondeterministic_algorithm

An Overview of Concurrent Programming

« Different executions of a concurrent program may produce different

instruction orderings:

* The textual order of the source code
doesn’t define the order of execution

computationA(), computationB(), &
computationC() can run in any order
after their threads start executing

new Thread(() ->
computationA()) .
start () ;

new Thread(() ->
computationB()) .
start() ;

new Thread(() ->
computationC()) .
start () ;

15

An Overview of Concurrent Programming

« Different executions of a concurrent program may produce different
instruction orderings:

« Operations are permitted to overlap
in time across multiple cores

16

An Overview of Concurrent Programming

« Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s)

~

[9_" »‘é
é\ \

5
background
threads | .«
< : ~
_\ J
ur
thread

See developer.android.com/topic/performance/threads.html

https://developer.android.com/topic/performance/threads.html

An Overview of Concurrent Programming

« Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g.

« Background thread(s) can block +§ 9§ 37 4 QN
background
threads
|8 _\ J
url
thread

See developer.android.com/training/multiple-threads/communicate-ui.html

https://developer.android.com/training/multiple-threads/communicate-ui.html

An Overview of Concurrent Programming

« Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g.

9% \ \ k=37
« The UI thread does not block r——

threads

See developer.android.com/training/multiple-threads/communicate-ui.html

https://developer.android.com/training/multiple-threads/communicate-ui.html

An Overview of Concurrent Programming

« Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g.

~

5

« Any mutable state shared between
these threads must be protected
to avoid concurrency hazards

J

Shared State

See upcoming lesson on “Overview of Concurrency in Java"

An Overview of Concurrent Programming

« Concurrent programming is often used to offload work from the user interface
(UI) thread to background thread(s), e.g. _ ~

- Any mutable state shared between write () |
these threads must be protected =5
to avoid concurrency hazards ~

« Motivates the need for various
types of synchronizers

AT IS

See upcoming lesson on “Overview of Java Synchronizers”

End of Overview of
Concurrent Programming
Concepts

22

