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Learning Objectives in this Part of the Lesson
• Understand the meaning of key 

concurrent programming concepts

UI thread

background threads
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An Overview  of 
Sequential Programming
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An Overview of Sequential Programming

See en.wikipedia.org/wiki/Sequential_algorithm

• Sequential programming is a form
of computing that executes the 
same sequence of instructions & 
always produces the same results 

https://en.wikipedia.org/wiki/Sequential_algorithm
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An Overview of Sequential Programming

See screenprism.com/insights/article/what-is-the-ludovico-technique-and-how-does-it-work

• Sequential programming is a form
of computing that executes the 
same sequence of instructions & 
always produces the same results 

• i.e., execution is deterministic
(assuming no deliberate use
of randomness)

http://screenprism.com/insights/article/what-is-the-ludovico-technique-and-how-does-it-work
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An Overview of Sequential Programming
• Sequential programs have two 

characteristics
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An Overview of Sequential Programming
• Sequential programs have two 

characteristics:

• The textual order of statements 
specifies their order of execution

See src/share/classes/java/util/ArrayList.java

public E get(int index) { 

rangeCheck(index); 

return elementData

(index); 

} 

e.g., the rangeCheck() method must be 
called before the elementData() method 

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/ArrayList.java
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An Overview of Sequential Programming
• Sequential programs have two 

characteristics:

• The textual order of statements 
specifies their order of execution

• Successive statements must 
execute without any temporal 
overlap visible to programmers
or programs
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An Overview of Sequential Programming
• Sequential programs have two 

characteristics:

• The textual order of statements 
specifies their order of execution

• Successive statements must 
execute without any temporal 
overlap visible to programmers
or programs

• However, instructions can 
be reordered transparently
to avoid pipeline stalls

See en.wikipedia.org/wiki/Instruction_scheduling

https://en.wikipedia.org/wiki/Instruction_scheduling
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An Overview of 
Concurrent Programming



11

An Overview of Concurrent Programming

See en.wikipedia.org/wiki/Concurrency_(computer_science)

• Concurrent programming is a form of computing where threads can run 
simultaneously

https://en.wikipedia.org/wiki/Concurrency_(computer_science)
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An Overview of Concurrent Programming
• Concurrent programming is a form of computing where threads can run 

simultaneously

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

for (int i = 0; i < 5; i++)

new Thread(() -> 

someComputation()).

start();

A thread is a unit of execution for 
instruction streams that can run 

concurrently on 1+ processor cores

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html
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An Overview of Concurrent Programming
• Concurrent programming is a form of computing where threads can run 

simultaneously

See en.wikipedia.org/wiki/Single-core

Threads may be multiplexed over one 
core, though this is increasingly rare..

for (int i = 0; i < 5; i++)

new Thread(() -> 

someComputation()).

start();

https://en.wikipedia.org/wiki/Single-core
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• Different executions of a concurrent program may produce different 
instruction orderings

An Overview of Concurrent Programming

See en.wikipedia.org/wiki/Nondeterministic_algorithm

https://en.wikipedia.org/wiki/Nondeterministic_algorithm
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• Different executions of a concurrent program may produce different 
instruction orderings:

• The textual order of the source code
doesn’t define the order of execution

An Overview of Concurrent Programming

new Thread(() -> 

computationA()).

start();

new Thread(() -> 

computationB()).

start();

new Thread(() -> 

computationC()).

start();computationA(), computationB(), & 
computationC() can run in any order

after their threads start executing
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• Different executions of a concurrent program may produce different 
instruction orderings:

• The textual order of the source code
doesn’t define the order of execution

• Operations are permitted to overlap 
in time across multiple cores

An Overview of Concurrent Programming
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• Concurrent programming is often used to offload work from the user interface 
(UI) thread to background thread(s)

An Overview of Concurrent Programming

See developer.android.com/topic/performance/threads.html

UI 
thread

background 
threads

https://developer.android.com/topic/performance/threads.html


18

• Concurrent programming is often used to offload work from the user interface 
(UI) thread to background thread(s), e.g.

• Background thread(s) can block

An Overview of Concurrent Programming

See developer.android.com/training/multiple-threads/communicate-ui.html

UI 
thread

background 
threads

https://developer.android.com/training/multiple-threads/communicate-ui.html
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• Concurrent programming is often used to offload work from the user interface 
(UI) thread to background thread(s), e.g.

• Background thread(s) can block

• The UI thread does not block

An Overview of Concurrent Programming

See developer.android.com/training/multiple-threads/communicate-ui.html

UI 
thread

background 
threads

https://developer.android.com/training/multiple-threads/communicate-ui.html
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• Concurrent programming is often used to offload work from the user interface 
(UI) thread to background thread(s), e.g.

• Background thread(s) can block

• The UI thread does not block

• Any mutable state shared between
these threads must be protected
to avoid concurrency hazards

An Overview of Concurrent Programming

See upcoming lesson on “Overview of Concurrency in Java”

write()

read()
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• Concurrent programming is often used to offload work from the user interface 
(UI) thread to background thread(s), e.g.

• Background thread(s) can block

• The UI thread does not block

• Any mutable state shared between
these threads must be protected
to avoid concurrency hazards

• Motivates the need for various
types of synchronizers

An Overview of Concurrent Programming

See upcoming lesson on “Overview of Java Synchronizers”

write()

read()
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End of Overview of 
Concurrent Programming 

Concepts


