
Evaluating the Java Parallel

ImageStreamGang Case Study

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure/functionality

of the ImageStreamGang app

• Visualize how Java parallel streams are
applied to the ImageStreamGang app

• Learn how to implement parallel streams
behaviors of ImageStreamGang

• Be aware of the pros & cons of
the parallel streams solution

See github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang

http://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI

3

Pros of the Java
Parallel Streams Solution

4

Pros of the Java Parallel Streams Solution
• The parallel stream version is faster than the sequential streams version

ImageStreamGang

Starting ImageStreamGangTest
Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL_STREAM executed in 428 msecs
SEQUENTIAL_STREAM executed in 981 msecs

Printing 4 results for input file 2 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES_1 executed in 83 msecs
PARALLEL_STREAM executed in 102 msecs
SEQUENTIAL_STREAM executed in 251 msecs
Ending ImageStreamGangTest

Six-core 2.6 Ghz Windows Intel computer with 64 GB RAM

5

Pros of the Java Parallel Streams Solution
• The parallel stream version is faster than the sequential streams version

• e.g., images are downloaded & processed
in parallel on multiple cores

6

Pros of the Java Parallel Streams Solution
void processStream() {

List<URL> urls = getInput();

List<Image> filteredImages = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::blockingDownload)

.flatMap(this::applyFilters)

.collect(toList());

System.out.println(TAG

+ "Image(s) filtered = "

+ filteredImages.size());

}

• The solution is relatively straight
forward to understand

7

Pros of the Java Parallel Streams Solution
void processStream() {

List<URL> urls = getInput();

List<Image> filteredImages = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::blockingDownload)

.flatMap(this::applyFilters)

.collect(toList());

System.out.println(TAG

+ "Image(s) filtered = "

+ filteredImages.size());

}

• The solution is relatively straight
forward to understand, e.g.

• The behaviors map cleanly
onto the domain intent

8See
www.iro.umontreal.ca/~keller/Layla/remote.pdf

Pros of the Java Parallel Streams Solution
void processStream() {

List<URL> urls = getInput();

List<Image> filteredImages = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::blockingDownload)

.flatMap(this::applyFilters)

.collect(toList());

System.out.println(TAG

+ "Image(s) filtered = "

+ filteredImages.size());

}

• The solution is relatively straight
forward to understand, e.g.

• The behaviors map cleanly
onto the domain intent

• Behaviors are all synchronous

CALLER CALLEE

Check the cache

Download the image

return result

return result

9

Pros of the Java Parallel Streams Solution
void processStream() {

List<URL> urls = getInput();

List<Image> filteredImages = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::blockingDownload)

.flatMap(this::applyFilters)

.collect(toList());

System.out.println(TAG

+ "Image(s) filtered = "

+ filteredImages.size());

}

• The solution is relatively straight
forward to understand, e.g.

• The behaviors map cleanly
onto the domain intent

• Behaviors are all synchronous

• The flow of control can be
read “linearly”

• Parallel programming thus
closely resembles sequential
programming

10

Cons of the Java
Parallel Streams Solution

11

Cons of the Java Parallel Streams Solution
• The completable futures versions are faster than the parallel streams version

ImageStreamGang

Starting ImageStreamGangTest
Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL_STREAM executed in 428 msecs
SEQUENTIAL_STREAM executed in 981 msecs

Printing 4 results for input file 2 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES_1 executed in 83 msecs
PARALLEL_STREAM executed in 102 msecs
SEQUENTIAL_STREAM executed in 251 msecs
Ending ImageStreamGangTest

12

• In general, there's a tradeoff between computing performance & programmer
productivity when choosing amongst Java parallelism frameworks

• i.e., completable futures are more efficient
& scalable than parallel streams, but are
somewhat harder to program

Performance

Productivity

Cons of the Java Parallel Streams Solution

13

End of Evaluating the Java
Parallel ImageStreamGang

Case Study

