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Learning Objectives in this Part of the Lesson
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• Understand parallel stream internals, e.g.

• Know what can change & what can’t

• Partition a data source into “chunks”

• Process chunks in parallel via the
common fork-join pool

• Configure the Java parallel 
stream common fork-join pool

• Perform a reduction to combine
partial results into a single result

• Recognize key behaviors & differences of
non-concurrent & concurrent collectors

• Learn how to implement non-concurrent & concurrent collectors
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Implementing Non-Concurrent 
& Concurrent Collectors



4See www.baeldung.com/java-8-collectors

Implementing Non-Concurrent & Concurrent Collectors
• The Collector interface defines

three generic types

http://www.baeldung.com/java-8-collectors
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Implementing Non-Concurrent & Concurrent Collectors
• The Collector interface defines

three generic types

• T – The type of objects available

in the stream

• e.g., Integer, String, SearchResults,
etc.
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Implementing Non-Concurrent & Concurrent Collectors
• The Collector interface defines

three generic types

• T

• A – The type of a mutable 
accumulator object for collection

• e.g., ConcurrentHashSet,
List of T, Future of T, etc.

• Lists can be implemented 
by ArrayList, LinkedList, etc.

See Java8/ex14/src/main/java/utils/ConcurrentHashSet.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex14/src/main/java/utils/ConcurrentHashSet.java
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Implementing Non-Concurrent & Concurrent Collectors
• The Collector interface defines

three generic types

• T

• A

• R – The type of a final result

• e.g., ConcurrentHashSet, List 
of T, Future to List of T, etc.

http://www.baeldung.com/java-8-collectors
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• Five methods are defined in the 
Collector interface

Implementing Non-Concurrent & Concurrent Collectors
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• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED 

• The collector need not preserve
the encounter order

Implementing Non-Concurrent & Concurrent Collectors

A concurrent collector should be UNORDERED, but a non-concurrent collector can be ORDERED
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• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED

• IDENTITY_FINISH 

• The finisher() is the identity 
function so it can be a no-op

• e.g. finisher() just returns null

Implementing Non-Concurrent & Concurrent Collectors
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• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED

• IDENTITY_FINISH

• CONCURRENT 

• accumulator() is called concurrently on result container 

Implementing Non-Concurrent & Concurrent Collectors

A concurrent collector should be CONCURRENT, but a non-concurrent collector should not be!

The mutable result container must be synchronized!!
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• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED

• IDENTITY_FINISH

• CONCURRENT 

• accumulator() is called concurrently on result container 

• The combiner() method is a no-op 

Implementing Non-Concurrent & Concurrent Collectors
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• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED

• IDENTITY_FINISH

• CONCURRENT 

• accumulator() is called concurrently on result container 

• The combiner() method is a no-op 

• A non-concurrent collector can be used 
with either sequential or parallel streams

Implementing Non-Concurrent & Concurrent Collectors

Internally, the streams framework decides how to ensure correct behavior
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Set characteristics() {

return Collections.unmodifiableSet

(EnumSet.of(Collector.Characteristics.CONCURRENT,

Collector.Characteristics.UNORDERED,

Collector.Characteristics.IDENTITY_FINISH));

}

• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

Implementing Non-Concurrent & Concurrent Collectors

See docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

Any/all characteristics can 
be set using EnumSet.of()

https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container

Implementing Non-Concurrent & Concurrent Collectors
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container, e.g.

• return ArrayList::new

Implementing Non-Concurrent & Concurrent Collectors

A non-concurrent collector provides a result container for each thread in a parallel stream
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container, e.g.

• return ArrayList::new

• return ConcurrentHashSet::new

Implementing Non-Concurrent & Concurrent Collectors

A concurrent collector has one result container shared by all threads in a parallel stream
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier()

• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container

Implementing Non-Concurrent & Concurrent Collectors
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier()

• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container, e.g.

• return List::add

Implementing Non-Concurrent & Concurrent Collectors

A non-concurrent collector needs no synchronization
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier()

• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container, e.g.

• return List::add

• return ConcurrentHashSet::add

Implementing Non-Concurrent & Concurrent Collectors

A concurrent collector’s result 
container must be synchronized
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner() – returns a binary

operator that merges two result 
containers together

Implementing Non-Concurrent & Concurrent Collectors
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner() – returns a binary

operator that merges two result 
containers together, e.g.

• return (one, another) -> { 

one.addAll(another); return one; 

}

Implementing Non-Concurrent & Concurrent Collectors

A combiner() is only used for a non-concurrent collector
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner() – returns a binary

operator that merges two result 
containers together, e.g.

• return (one, another) -> { 

one.addAll(another); return one; 

}

• return null

Implementing Non-Concurrent & Concurrent Collectors

The combiner() method is not called when CONCURRENT is set 
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner()

• finisher() – returns a function 

that converts the result container
to final result type

Implementing Non-Concurrent & Concurrent Collectors
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner()

• finisher() – returns a function 

that converts the result container
to final result type, e.g.

• Function.identity()

Implementing Non-Concurrent & Concurrent Collectors
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner()

• finisher() – returns a function 

that converts the result container
to final result type, e.g.

• Function.identity()

• return null

Implementing Non-Concurrent & Concurrent Collectors

Should be a no-op if IDENTITY_FINISH characteristic is set
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• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner()

• finisher() – returns a function 

that converts the result container
to final result type, e.g.

• Function.identity()

• return null

Implementing Non-Concurrent & Concurrent Collectors

See ImageCounter/src/main/java/utils/StreamOfFuturesCollector.java

Stream

.generate(() -> 

makeBigFraction

(new Random(), false))

.limit(sMAX_FRACTIONS)

.map(reduceAndMultiplyFraction)

.collect(FuturesCollector

.toFuture())

.thenAccept

(this::sortAndPrintList);

finisher() can also be 
much more interesting!

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageCounter/src/main/java/utils/StreamOfFuturesCollector.java
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End of Java Parallel Streams 
Internals: Non-Concurrent & 
Concurrent Collectors (Part 2)


