
Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

Understand Java Parallel Streams Internals: 

Non-Concurrent & Concurrent Collectors (Part 2)

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

accumulate() accumulate()

accumulate()

Concurrent
Result Container

• Understand parallel stream internals, e.g.

• Know what can change & what can’t

• Partition a data source into “chunks”

• Process chunks in parallel via the
common fork-join pool

• Configure the Java parallel 
stream common fork-join pool

• Perform a reduction to combine
partial results into a single result

• Recognize key behaviors & differences of
non-concurrent & concurrent collectors

• Learn how to implement non-concurrent & concurrent collectors



3

Implementing Non-Concurrent 
& Concurrent Collectors



4See www.baeldung.com/java-8-collectors

Implementing Non-Concurrent & Concurrent Collectors
• The Collector interface defines

three generic types

http://www.baeldung.com/java-8-collectors


5

Implementing Non-Concurrent & Concurrent Collectors
• The Collector interface defines

three generic types

• T – The type of objects available

in the stream

• e.g., Integer, String, SearchResults,
etc.



6

Implementing Non-Concurrent & Concurrent Collectors
• The Collector interface defines

three generic types

• T

• A – The type of a mutable 
accumulator object for collection

• e.g., ConcurrentHashSet,
List of T, Future of T, etc.

• Lists can be implemented 
by ArrayList, LinkedList, etc.

See Java8/ex14/src/main/java/utils/ConcurrentHashSet.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex14/src/main/java/utils/ConcurrentHashSet.java


7See www.baeldung.com/java-8-collectors

Implementing Non-Concurrent & Concurrent Collectors
• The Collector interface defines

three generic types

• T

• A

• R – The type of a final result

• e.g., ConcurrentHashSet, List 
of T, Future to List of T, etc.

http://www.baeldung.com/java-8-collectors


8

• Five methods are defined in the 
Collector interface

Implementing Non-Concurrent & Concurrent Collectors



9

• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED 

• The collector need not preserve
the encounter order

Implementing Non-Concurrent & Concurrent Collectors

A concurrent collector should be UNORDERED, but a non-concurrent collector can be ORDERED



10

• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED

• IDENTITY_FINISH 

• The finisher() is the identity 
function so it can be a no-op

• e.g. finisher() just returns null

Implementing Non-Concurrent & Concurrent Collectors



11

• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED

• IDENTITY_FINISH

• CONCURRENT 

• accumulator() is called concurrently on result container 

Implementing Non-Concurrent & Concurrent Collectors

A concurrent collector should be CONCURRENT, but a non-concurrent collector should not be!

The mutable result container must be synchronized!!



12

• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED

• IDENTITY_FINISH

• CONCURRENT 

• accumulator() is called concurrently on result container 

• The combiner() method is a no-op 

Implementing Non-Concurrent & Concurrent Collectors



13

• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

• UNORDERED

• IDENTITY_FINISH

• CONCURRENT 

• accumulator() is called concurrently on result container 

• The combiner() method is a no-op 

• A non-concurrent collector can be used 
with either sequential or parallel streams

Implementing Non-Concurrent & Concurrent Collectors

Internally, the streams framework decides how to ensure correct behavior



14

Set characteristics() {

return Collections.unmodifiableSet

(EnumSet.of(Collector.Characteristics.CONCURRENT,

Collector.Characteristics.UNORDERED,

Collector.Characteristics.IDENTITY_FINISH));

}

• Five methods are defined in the 
Collector interface

• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

Implementing Non-Concurrent & Concurrent Collectors

See docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

Any/all characteristics can 
be set using EnumSet.of()

https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html


15

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container

Implementing Non-Concurrent & Concurrent Collectors



16

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container, e.g.

• return ArrayList::new

Implementing Non-Concurrent & Concurrent Collectors

A non-concurrent collector provides a result container for each thread in a parallel stream



17

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container, e.g.

• return ArrayList::new

• return ConcurrentHashSet::new

Implementing Non-Concurrent & Concurrent Collectors

A concurrent collector has one result container shared by all threads in a parallel stream



18

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier()

• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container

Implementing Non-Concurrent & Concurrent Collectors



19

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier()

• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container, e.g.

• return List::add

Implementing Non-Concurrent & Concurrent Collectors

A non-concurrent collector needs no synchronization



20

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier()

• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container, e.g.

• return List::add

• return ConcurrentHashSet::add

Implementing Non-Concurrent & Concurrent Collectors

A concurrent collector’s result 
container must be synchronized



21

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner() – returns a binary

operator that merges two result 
containers together

Implementing Non-Concurrent & Concurrent Collectors



22

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner() – returns a binary

operator that merges two result 
containers together, e.g.

• return (one, another) -> { 

one.addAll(another); return one; 

}

Implementing Non-Concurrent & Concurrent Collectors

A combiner() is only used for a non-concurrent collector



23

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner() – returns a binary

operator that merges two result 
containers together, e.g.

• return (one, another) -> { 

one.addAll(another); return one; 

}

• return null

Implementing Non-Concurrent & Concurrent Collectors

The combiner() method is not called when CONCURRENT is set 



24

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner()

• finisher() – returns a function 

that converts the result container
to final result type

Implementing Non-Concurrent & Concurrent Collectors



25

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner()

• finisher() – returns a function 

that converts the result container
to final result type, e.g.

• Function.identity()

Implementing Non-Concurrent & Concurrent Collectors



26

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner()

• finisher() – returns a function 

that converts the result container
to final result type, e.g.

• Function.identity()

• return null

Implementing Non-Concurrent & Concurrent Collectors

Should be a no-op if IDENTITY_FINISH characteristic is set



27

• Five methods are defined in the 
Collector interface

• characteristics()

• supplier() 

• accumulator()

• combiner()

• finisher() – returns a function 

that converts the result container
to final result type, e.g.

• Function.identity()

• return null

Implementing Non-Concurrent & Concurrent Collectors

See ImageCounter/src/main/java/utils/StreamOfFuturesCollector.java

Stream

.generate(() -> 

makeBigFraction

(new Random(), false))

.limit(sMAX_FRACTIONS)

.map(reduceAndMultiplyFraction)

.collect(FuturesCollector

.toFuture())

.thenAccept

(this::sortAndPrintList);

finisher() can also be 
much more interesting!

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageCounter/src/main/java/utils/StreamOfFuturesCollector.java


28

End of Java Parallel Streams 
Internals: Non-Concurrent & 
Concurrent Collectors (Part 2)


