Understand Java Parallel Streams Internals: Non-Concurrent & Concurrent Collectors (Part 1)

Douglas C. Schmidt

<u>d.schmidt@vanderbilt.edu</u>

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

 Understand parallel stream internals, e.g. **InputString** Know what can change & what can't trySplit() Partition a data source into "chunks" InputString₁ InputString₂ Process chunks in parallel via the trySplit() trySplit() common fork-join pool InputString_{1,2} InputString_{1,1} InputString_{2,1} InputString₂ Configure the Java parallel **Process Process** Process **Process** sequentially sequentially sequentially sequentially stream common fork-join pool accumulate() Perform a reduction to combine accumulate() accumulate() partial results into a single result Concurrent Result Container Recognize key behaviors & differences of non-concurrent & concurrent collectors

 Collector defines an interface whose implementations can accumulate input elements in a mutable result container

Interface Collector<T,A,R>

Type Parameters:

- T the type of input elements to the reduction operation
- A the mutable accumulation type of the reduction operation (often hidden as an implementation detail)
- R the result type of the reduction operation

public interface Collector<T,A,R>

A mutable reduction operation that accumulates input elements into a mutable result container, optionally transforming the accumulated result into a final representation after all input elements have been processed. Reduction operations can be performed either sequentially or in parallel.

Examples of mutable reduction operations include: accumulating elements into a Collection; concatenating strings using a StringBuilder; computing summary information about elements such as sum, min, max, or average; computing "pivot table" summaries such as "maximum valued transaction by seller", etc. The class Collectors provides implementations of many common mutable reductions.

A Collector is specified by four functions that work together to accumulate entries into a mutable result container, and optionally perform a final transform on the result. They are:

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

 Collector implementations can either be concurrent or non-concurrent based on their characteristics

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

- Collector implementations can either be concurrent or non-concurrent based on their characteristics
 - This distinction is only relevant for parallel streams

- Collector implementations can either be concurrent or non-concurrent based on their characteristics
 - This distinction is only relevant for parallel streams
 - A non-concurrent collector can be used for either a sequential stream or a parallel stream!

We just focus on parallel streams in this lesson

A non-concurrent collector operates by merging sub-results

- A non-concurrent collector operates by merging sub-results
 - The input is partitioned into chunks

- A non-concurrent collector operates by merging sub-results
 - The input is partitioned into chunks
 - Each chunk runs in parallel in the common fork-join pool

- A non-concurrent collector operates by merging sub-results
 - The input is partitioned into chunks
 - Each chunk runs in parallel in the common fork-join pool
 - Chunk sub-results are collected into an intermediate mutable result container
 - e.g., list, set, map, etc.

- A non-concurrent collector operates by merging sub-results
 - The input is partitioned into chunks
 - Each chunk runs in parallel in the common fork-join pool
 - Chunk sub-results are collected into an intermediate mutable result container
 - e.g., list, set, map, etc.

Different threads operate on different instances of intermediate result containers

- A non-concurrent collector operates by merging sub-results
 - The input is partitioned into chunks
 - Each chunk runs in parallel in the common fork-join pool
 - Chunk sub-results are collected into an intermediate mutable result container

Sub-results are merged into one mutable result container

- A non-concurrent collector operates by merging sub-results
 - The input is partitioned into chunks
 - Each chunk runs in parallel in the common fork-join pool
 - Chunk sub-results are collected into an intermediate mutable result container
 - Sub-results are merged into one mutable result container
 - Only one thread in the fork-join pool is used to merge any pair of intermediate sub-results

- A non-concurrent collector operates by merging sub-results
 - The input is partitioned into chunks
 - Each chunk runs in parallel in the common fork-join pool
 - Chunk sub-results are collected into an intermediate mutable result container
 - Sub-results are merged into one mutable result container
 - Only one thread in the fork-join pool is used to merge any pair of intermediate sub-results

Thus there's no need for any synchronizers in a non-concurrent collector

- A non-concurrent collector operates by merging sub-results
 - The input is partitioned into chunks
 - Each chunk runs in parallel in the common fork-join pool
 - Chunk sub-results are collected into an intermediate mutable result container
 - Sub-results are merged into one mutable result container

This process is safe & order-preserving, but costly for containers like maps & sets

A concurrent collector creates one concurrent mutable result container &

accumulates elements into it from multiple threads in a parallel stream

- A concurrent collector creates one concurrent mutable result container & accumulates elements into it from multiple threads in a parallel stream
 - As usual, the input is partitioned into chunks

A concurrent collector creates one concurrent mutable result container & accumulates elements into it from multiple

threads in a parallel stream

As usual, the input is partitioned into chunks

 Each chunk runs in parallel in the common fork-join pool

A concurrent collector creates one concurrent mutable result container &

accumulates elements into it from multiple threads in a parallel stream

- As usual, the input is partitioned into chunks
- Each chunk runs in parallel in the common fork-join pool
- Chunk sub-results are collected into one mutable result container
 - e.g., a concurrent collection

See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

A concurrent collector creates one concurrent mutable result container & accumulates elements into it from multiple

threads in a parallel stream

As usual, the input is partitioned into chunks

- Each chunk runs in parallel in the common fork-join pool
- Chunk sub-results are collected into one mutable result container
 - e.g., a concurrent collection

Different threads in a parallel stream share one concurrent result container

• A concurrent collector creates one concurrent mutable result container &

accumulates elements into it from multiple threads in a parallel stream

- As usual, the input is partitioned into chunks
- Each chunk runs in parallel in the common fork-join pool
- Chunk sub-results are collected into one mutable result container

Thus there's no need to merge any intermediate sub-results!

Of course, encounter order is not preserved & synchronization is required...

 A concurrent collector may out-perform a non-concurrent collector if merging costs are higher than synchronization costs

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

- A concurrent collector may out-perform a non-concurrent collector if merging costs are higher than synchronization costs
 - Highly optimized result containers like ConcurrentHashMap may be more efficient than merging HashMaps

- A concurrent collector may out-perform a non-concurrent collector if merging costs are higher than synchronization costs
 - Highly optimized result containers like ConcurrentHashMap may be more efficient than merging HashMaps
 - ConcurrentHashMap is also more efficient than a SynchronizedMap

0 1 2 n
Hash Hash Hash
Bin Bin Bin Bin

SynchronizedMap

ConcurrentHashMap Bin Locks 1 Hash Bin Bin Bin Bin Bin

Contention is low due to use of multiple locks

- A concurrent collector may out-perform a non-concurrent collector if merging costs are higher than synchronization costs
 - Highly optimized result containers like ConcurrentHashMap may be more efficient than merging HashMaps
 - ConcurrentHashMap is also more efficient than a SynchronizedMap

In contrast, SynchronizedMap uses just one lock

See www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

End of Understand Java Parallel Streams Internals: Non-Concurrent & Concurrent Collectors (Part 1)