Non-Goncurrent & GConcurrent Gollectors (Part 1}

Douglas C. Schmidt
i.schmidt@uanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson
« Understand parallel stream internals, e.g.

Process Process Process Process
sequentially sequentially sequentially sequentially

‘\ k accumulate()) /I
accumulate() accumulate()
Concurrent
Result Container

» Recognize key behaviors & differences of
non-concurrent & concurrent collectors

Overview of Concurrent &
Non-Concurrent Collectors

Overview of Concurrent & Non-Concurrent Collectors

« Collector defines an interface
whose implementations can
accumulate input elements
in @ mutable result container

Interface Collector<T,A,R>

Type Parameters:

T - the type of input elements to the reduction operation

A - the mutable accumulation type of the reduction operation (often hidden as
an implementation detail)

R - the result type of the reduction operation

public interface Collector<T,A,R>

A mutable reduction operation that accumulates input elements into a mutable result
container, optionally transforming the accumulated result into a final representation after
all input elements have been processed. Reduction operations can be performed either
sequentially or in parallel.

Examples of mutable reduction operations include: accumulating elements into a
Collection; concatenating strings using a StringBuilder; computing summary
information about elements such as sum, min, max, or average; computing "pivot table"
summaries such as "maximum valued transaction by seller", etc. The class Collectors
provides implementations of many common mutable reductions.

A Collector is specified by four functions that work together to accumulate entries into a
mutable result container, and optionally perform a final transform on the result. They are:

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Concurrent & Non-Concurrent Collectors

« Collector implementations can either be |enum coliector.characteristics
concurrent or non-concurrent based

java.util.stream.Collector.Characteristics

on their characteristics

Serializable, Comparable<Collector.Characteristics>

Enclosing interface:
Collector<T,A,R>

public static enum Collector.Characteristics
extends Enum<Collector.Characteristics>

Characteristics indicating properties of a Collector, which can be used to optimize
reduction implementations

Enum Constant Summary

Enum Constants

Enum Constant and Description

CONCURRENT

Indicates that this collector is concurrent, meaning that the result container can
support the accumulator function being called concurrently with the same result
container from multiple threads.

IDENTITY_FINISH
Indicates that the finisher function is the identity function and can be elided.

UNORDERED
Indicates that the collection operation does not commit to preserving the encounter
order of input elements

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Overview of Concurrent & Non-Concurrent Collectors

 Collector implementations can either be
concurrent or non-concurrent based - - [

on their characteristics i-;-é--g---g-éi--;é--,ii-;-g---

 This distinction is only relevant for :
para Jlel streams filter(no_t(this: :urIC_ached)) _

map(this::downloadimage)

BV

flatMap(this::applyFilters)

i

collect(toList())

See 'Java Streams. Introducing Non-Concurrent Collectors”

Overview of Concurrent & Non-Concurrent Collectors

 Collector implementations can either be
concurrent or non-concurrent based
on their characteristics

« A non-concurrent collector can be
used for either a sequential stream
or a parallel stream!

We just focus on parallel streams in this lesson

Structure & Functionality of
Non-Concurrent Collectors

Structure & Functionality of Non-Concurrent Collectors
« A non-concurrent collector operates by merging sub-results

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Structure & Functionality of Non-Concurrent Collectors

« A non-concurrent collector operates by merging sub-results

« The input is partitioned into chunks

InputSource

trySplit()

InputSource,

InputSource,

trySplit()

trySplit()

InputSource, 4

InputSource; 5| [InputSource, ,

InputSource, ,

10

Structure & Functionality of Non-Concurrent Collectors
« A non-concurrent collector operates by merging sub-results

» Each chunk runs in parallel in
the common fork-join pool

I I . l I
Process Process Process Process
sequentially sequentially sequentially sequentially

£Q 50 $Q €0

h 4 Pool of worker thread®

11

Structure & Functionality of Non-Concurrent Collectors
« A non-concurrent collector operates by merging sub-results

* Chunk sub-results are collected
into an intermediate mutable | | |

resu It container Process Process Process Process
sequentially sequentially sequentially sequentially

. e.g, list, set, map, etc. = d) %éd) 956 9§é

12

Structure & Functionality of Non-Concurrent Collectors
« A non-concurrent collector operates by merging sub-results

* Chunk sub-results are collected
into an intermediate mutable | | |

resu It container Process Process Process Process
sequentially sequentially sequentially sequentially

. e.g, list, set, map, etc. = d) 956 »éd) egé

Different threads operate on different instances of intermediate result containers

Structure & Functionality of Non-Concurrent Collectors

« A non-concurrent collector operates by merging sub-results

« Sub-results are merged into one
mutable result container

14

Structure & Functionality of Non-Concurrent Collectors

« A non-concurrent collector operates by merging sub-results

« Sub-results are merged into one
mutable result container

« Only one thread in the fork-join
pool is used to merge any pair of
intermediate sub-results

15

Structure & Functionality of Non-Concurrent Collectors

« A non-concurrent collector operates by merging sub-results

« Sub-results are merged into one
mutable result container

« Only one thread in the fork-join
pool is used to merge any pair of
intermediate sub-results

Thus there’s no need for any synchronizers in a hon-concurrent collector

Structure & Functionality of Non-Concurrent Collectors
* A non-concurrent collector operates by merglng sub- results

Process Process Process Process
sequentially sequentially sequentially sequentially

« Sub-results are merged into one

mutable result container

This process Is safe & order-preserving,
but costly for containers like maps & sets

17

Structure & Functionality
of Concurrent Collectors

18

Structure & Functionality of Concurrent Collectors

e A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream

-
Y
EN

- ‘ ' »
~ . -
: % >
\n ’ a2

See stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

https://stackoverflow.com/questions/22350288/parallel-streams-collectors-and-thread-safety

Structure & Functionality of Concurrent Collectors

e A concurrent collector creates one concurrent mutable result container &

accumulates elements into it from multiple

threads in a parallel stream

« As usual, the input is partitioned
into chunks

InputSource

InputSource,

trySplit()

trySplit()

InputSource,

trySplit()

InputSource, 4

InputSource, ,

InputSource, 4 InputSource, ,

20

Structure & Functionality of Concurrent Collectors

e A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream

« Each chunk runs in parallel in
the common fork-join pool | - I I

Process Process Process Process
sequentially sequentially sequentially sequentially

‘\ k accumulate()) /I
accumulate() accumulate()
Concurrent
Result Container

21

S
9 pooy of worker thread

Structure & Functionality of Concurrent Collectors

e A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream

Process Process Process Process

° C h un k su b_ resu |tS are CO| |e Cted sequentially sequentially sequentially sequentially

into one mutable result container ‘\ kaccumu/ate()) /I
o : accumulate() accumulate()
e.g., a concurrent collection Concurrent
Result Container

See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

Structure & Functionality of Concurrent Collectors

e A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream

Process Process Process Process

o Chunk SUb'FESUltS are coIIected sequentially sequentially sequentially sequentially
into one mutable result container ‘\ kaccumu/ate()) /I

o : accumulate() AN V4 accumulate()
e.g., a concurrent collection oreurent
Result Container
Different threads in a parallel stream

share one concurrent result container

23

Structure & Functionality of Concurrent Collectors

e A concurrent collector creates one concurrent mutable result container &
accumulates elements into it from multiple
threads in a parallel stream

e Chunk sub-results are collected
into one mutable result container

Thus there’s no need to merge
any intermediate sub-results!

Of course, encounter order is not preserved & synchronization is required..

Structure & Functionality of Concurrent Collectors

A concurrent collector may out-perform a <<Java Interface>>
. . &3 Collector<T,A,R>

non-concurrent collector /f merging costs
are higher than synchronization costs

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>

@ combiner():BinaryOperator<A>

@ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

JaN

<<Java Class>>
(9 ConcurrentHashSetCollector<T>

@ ConcurrentHashSetCollector()

@ supplier():Supplier<ConcurrentHashSet<T>>

@ accumulator():BiConsumer<ConcurrentHashSet<T>T>

@ combiner():BinaryOperator<ConcurrentHashSet<T>>

@ finisher():Function<ConcurrentHashSet<T>,ConcurrentHashSet<T>>
@ characteristics():Set
{}StoSet():CoIIector<E,?,ConcurrentHaShSet<E>>

See github.com/douglascraigschmidt/Livel essons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

Structure & Functionality of Concurrent Collectors

« A concurrent collector may out-perform a HashMap
non-concurrent collector /f merging costs 0 1 5 n
are higher than synchronization costs
 Highly optimized result containers like 7 N I

ConcurrentHashMap may be more HBa_sh H;_sh HBa_sh H;_sh
efficient than merging HashMaps L n n n_
ConcurrentHashMap
(N N i P
o 0 N : M
S S S LB"|1(S
A T T~ OCKS -
1 2 n
Hash Hash >I‘ash Halsh
L Bin Bin Bin Bin)

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

Structure & Functionality of Concurrent Collectors

A concurrent collector may out-perform a
non-concurrent collector /f merging costs
are higher than synchronization costs

SynchronizedMap

» ConcurrentHashMap is also more
efficient than a SynchronizedMap

/

Contention is low due to use of multiple locks

\

0 1 2 “;“ N
Has/h Hash >I‘ash Halsh
Bin Bin Bin Bin
ConcurrentHashMap
(f E“ @ (f E“ Bin (f ;“
L= — o — Locks —
0 1 2 n
Hash Hash >I‘ash Halsh
Bin Bin Bin Bin

J

See www.guora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

http://www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

Structure & Functionality of Concurrent Collectors

A concurrent collector may out-perform a
non-concurrent collector /f merging costs
are higher than synchronization costs

» ConcurrentHashMap is also more
efficient than a SynchronizedMap

SynchronizedMap

In contrast, SynchronizedMap uses just one lock

S

\

0 1 2 “;“ N
Has/h Hash >I‘ash Halsh
Bin Bin Bin Bin
ConcurrentHashMap

(f g“ @ (f g“ Segment (;“
— — — Locks —
0 1 2 n
Hash Hash >I‘ash Halsh
Bin Bin Bin Bin

y,

See www.guora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

http://www.quora.com/What-is-the-difference-between-synchronize-and-concurrent-collection-in-Java

End of Understand Java Parallel
Streams Internals: Non-
Concurrent & Concurrent

Collectors (Part 1)

29

