
Understand Java Parallel Streams Internals:

Combining Results (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand parallel stream internals, e.g.

• Know what can change & what can’t

• Partition a data source into “chunks”

• Process chunks in parallel via the
common fork-join pool

• Configure the Java parallel 
stream common fork-join pool

• Perform a reduction to combine
partial results into a single result

• Be aware of common traps &
pitfalls with parallel streams

Learning Objectives in this Part of the Lesson



3

Differences for collect() & 
reduce() in a Parallel Stream



4

• It’s important to understand the
semantic differences between
collect() & reduce()

Differences for collect() & reduce() in a Parallel Stream



5

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new StringBuilder(),

StringBuilder::append,

StringBuilder::append)

.toString();

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17


6

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3

(boolean parallel) {

...

Stream<String> wordStream =

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new StringBuilder(),

StringBuilder::append,

StringBuilder::append)

.toString();

Convert a list of words 
into a stream of words

Naturally, this call doesn’t really do any work since streams are “lazy”



7

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new StringBuilder(),

StringBuilder::append,

StringBuilder::append)

.toString();

A stream can be dynamically 
switched to “parallel” mode!

See docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel

https://docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel--


8

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new StringBuilder(),

StringBuilder::append,

StringBuilder::append)

.toString();

See mail.openjdk.java.net/pipermail/lambda-libs-spec-experts/2013-March/001504.html

The “last” call to .parallel() or 
.sequential() in a stream “wins”

http://mail.openjdk.java.net/pipermail/lambda-libs-spec-experts/2013-March/001504.html


9

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new StringBuilder(),

StringBuilder::append,

StringBuilder::append)

.toString();

This code works when parallel is 
false since the StringBuilder is 
only called in a single thread

See docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html

https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html


10

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new StringBuilder(),

StringBuilder::append,

StringBuilder::append)

.toString();

This code fails when parallel is 
true since reduce() expects to 
do an “immutable” reduction 



11

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

Differences for collect() & reduce() in a Parallel Stream
void buggyStreamReduce3

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new StringBuilder(),

StringBuilder::append,

StringBuilder::append)

.toString();There’s a race condition here since 
StringBuilder is not thread-safe..

See www.baeldung.com/java-string-builder-string-buffer

http://www.baeldung.com/java-string-builder-string-buffer


12

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

• One solution use reduce() with
string concatenation

Differences for collect() & reduce() in a Parallel Stream
void streamReduceConcat

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new String(),

(x, y) -> x + y);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17


13

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

• One solution use reduce() with
string concatenation

Differences for collect() & reduce() in a Parallel Stream
void streamReduceConcat

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.reduce(new String(),

(x, y) -> x + y);

This simple fix is inefficient due 
to string concatenation overhead

See javarevisited.blogspot.com/2015/01/3-examples-to-concatenate-string-in-java.html

https://javarevisited.blogspot.com/2015/01/3-examples-to-concatenate-string-in-java.html


14

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

• One solution use reduce() with
string concatenation

• Another solution uses collect()
with the joining collector

Differences for collect() & reduce() in a Parallel Stream
void streamCollectJoining

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.collect(joining());

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17


15

• It’s important to understand the
semantic differences between
collect() & reduce(), e.g.

• Always test w/a parallel stream
to detect mistakes wrt mutable
vs. immutable reductions

• One solution use reduce() with
string concatenation

• Another solution uses collect()
with the joining collector

Differences for collect() & reduce() in a Parallel Stream
void streamCollectJoining

(boolean parallel) {

...

Stream<String> wordStream = 

allWords.stream();

if (parallel)

wordStream.parallel();

String words = wordStream

.collect(joining());

This is a much better solution!!

See www.mkyong.com/java8/java-8-stringjoiner-example

http://www.mkyong.com/java8/java-8-stringjoiner-example


16

• Also beware of issues related 
to associativity & identity with
reduce()

Differences for collect() & reduce() in a Parallel Stream
void testDifferenceReduce(...) {

long difference = LongStream

.rangeClosed(1, 100)

.parallel()

.reduce(0L,

(x, y) -> x - y);

}

void testSum(long identity, ...) {

long sum = LongStream

.rangeClosed(1, 100)

.reduce(identity,

// Could use (x, y) -> x + y

Math::addExact);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex17


17

• Also beware of issues related 
to associativity & identity with
reduce()

Differences for collect() & reduce() in a Parallel Stream
void testDifferenceReduce(...) {

long difference = LongStream

.rangeClosed(1, 100)

.parallel()

.reduce(0L,

(x, y) -> x - y);

}

void testSum(long identity, ...) {

long sum = LongStream

.rangeClosed(1, 100)

.reduce(identity,

// Could use (x, y) -> x + y

Math::addExact);

This code fails for a parallel stream 
since subtraction is not associative

See developer.ibm.com/articles/j-java-streams-2-brian-goetz

https://developer.ibm.com/articles/j-java-streams-2-brian-goetz


18

• Also beware of issues related 
to associativity & identity with
reduce()

Differences for collect() & reduce() in a Parallel Stream
void testDifferenceReduce(...) {

long difference = LongStream

.rangeClosed(1, 100)

.parallel()

.reduce(0L,

(x, y) -> x - y);

}

void testSum(long identity, ...) {

long sum = LongStream

.rangeClosed(1, 100)

.reduce(identity,

// Could use (x, y) -> x + y

Math::addExact);
This code fails if identity is not 0L

The “identity” of an OP is defined as “identity OP value == value” (& inverse) 



19

• Also beware of issues related 
to associativity & identity with
reduce()

Differences for collect() & reduce() in a Parallel Stream
void testDifferenceReduce(...) {

long difference = LongStream

.rangeClosed(1, 100)

.parallel()

.reduce(0L,

(x, y) -> x - y);

}

void testProd(long identity, ...) {

long sum = LongStream

.rangeClosed(1, 100)

.reduce(identity,

(x, y) -> x * y);This code fails if identity is not 1L



20

• More good discussions about 
reduce() vs. collect() appear
online

Differences for collect() & reduce() in a Parallel Stream

See www.youtube.com/watch?v=oWlWEKNM5Aw

http://www.youtube.com/watch?v=oWlWEKNM5Aw


21

End of Understand Java 
Parallel Streams Internals: 
Combining Results (Part 2)


