Combhining Resuits (Part 1)

Douglas C. Schmidt
i.schmidt@uanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson
« Understand parallel stream internals, e.g.

Process Process Process Process
sequentially sequentially sequentially sequentially

 Perform a reduction to combine
partial results into a single result

See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

Combining Results
in a Parallel Stream

Combining Results in a Parallel Stream

 After the common fork-join pool finishes
processing chunks their partial results

are combined into a final result

DataSource,

DataSource; ;

Process
sequentially

Final result

DataSource
DataSource,
DataSource; , DataSource, 4 DataSource, ,
I I I
Process Process Process
sequentially sequentially sequentially

This discussion assumes a non-concurrent collector (other discussions follow)

Combining Results in a Parallel Stream

« After the common fork-join pool finishes DataSource

processing chunks their partial results
are combined into a final result

» join() occurs in a single
thread at each level

* i.e., the “parent”

DataSource, DataSource,
DataSource; ; DataSource; , DataSource, 4 DataSource, ,
I I I
Process Process Process Process
sequentially sequentially sequentially sequentially

"Children”

join

"Parent”

5

Combining Results in a Parallel Stream

« After the common fork-join pool finishes DataSource
processing chunks their partial results
are combined into a final result

DataSource, DataSource,
* join() occurs in a single
thread at each level
] “ " DataSource; ; DataSource; , DataSource, 4 DataSource, ,
* i.e., the "parent | | | |
Process Process Process Process
sequentially sequentially sequentially sequentially

"Children”

join

"Parent”

As a result, there’s typically no need for synchronizers during the joining

Combining Results in a Parallel Stream

« Different terminal operations combine
partial results in different ways

Understanding these differences is particularly important for parallel streams

Combining Results in a Parallel Stream

« Different terminal operations combine
partial results in different ways, e.g.

 reduce() creates a new
immutable value

See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

Combining Results in a Parallel Stream

« Different terminal operations combine

partial results in different ways, e.g.

Range of longs from 1..8

 reduce() creates a new

longs 1..4

immutable value

longs 1..2

longs 3..4

longs 5..8

long factorial (long n) {

longs 5..6

longs 7..8

return LongStream

.rangeClosed (1, n).////////

Generate a range of longs
from 1..8 in paralle/

.parallel ()
.reduce(l, (a, b) -> a * b,
(a, b) -> a * b);

See github.com/douglascraigschmidt/Livel essons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Combining Results in a Parallel Stream

« Different terminal operations combine

partial results in different ways, e.g.

 reduce() creates a new
immutable value

Multiply pair-wise values

long factorial (long n) {
return LongStream
.rangeClosed(1l, n)
.parallel ()

.reduce(l, (a, b) -> a * b);

Range of longs from 1..8

longs 1..4
longs 1..2 longs 3..4
I I
Process Process
sequentially sequentially

longs 5..8
longs 5..6 longs 7..8
I I
Process Process
sequentially sequentially

See github.com/douglascraigschmidt/Livel essons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Combining Results in a Parallel Stream

« Different terminal operations combine

partial results in different ways, e.g.

 reduce() creates a new
immutable value

Multiply pair-wise values

long factorial (long n) {
return LongStream
.rangeClosed(1l, n)
.parallel ()

.reduce(l, (a, b) -> a * b);

Range of longs from 1..8

longs 1..4
longs 1..2 longs 3..4
I I
Process Process
sequentially sequentially

QB,EUMEO

reduce()

reduce()

longs 5..8
longs 5..6 longs 7..8
I I
Process Process
sequentially sequentially

reduce() combines two immutable values (e.g., long) & produces a new one

Combining Results in a Parallel Stream

« Different terminal operations combine
partial results in different ways, e.g.

« collect() mutates an
existing value

See greenteapress.com/thinkapjava/html/thinkjava011.html

http://greenteapress.com/thinkapjava/html/thinkjava011.html

Combining Results in a Parallel Stream

« Different terminal operations combine All words in Shakespeare’s works
partial results in different ways, e.g.

1st half of words 2nd half of words

°
COl |eCt() m Utates an 1%t quarter of words 2nd quarter of words 3rd quarter of words 4t quarter of words

existing value | | | I
Process Process Process Process

sequentially sequentially sequentially sequentially
Set<CharSequence>

uniqueWords =
getInput (sSHAKESPEARE) ,

"\\S+")
.parallelStream()

.collect (toCollection (TreeSet: :new)) ;

See github.com/douglascraigschmidt/Livel essons/tree/master/Java8/ex14

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

Combining Results in a Parallel Stream

« Different terminal operations combine
partial results in different ways, e.g.

All words in Shakespeare’s works

1st half of words

« collect() mutates an P——

2nd quarter of words

2nd half of words

existing value |

Process
sequentially
Set<CharSequence>
uniqueWords =
getInput (sSHAKESPEARE) ,
"\\S‘l‘")
.parallelStream/ ()

.collect (toCollection (TreeSet: :new)) ;

Process
sequentially

collect()

31 quarter of words

collect()

Process
sequentially

collect()

4th quarter of words

Process
sequentially

collect() mutates a container to accumulate the result it's producing

Combining Results in a Parallel Stream

« Different terminal operations combine All words in Shakespeare’s works
partial results in different ways, e.g.

1st half of words 2" half of words
* COl |eCt() m Utates a n 1st quarter of words 2nd quarter of words 3 quarter of words 4th quarter of words
existing value | | | I
Process Process Process Process
sequentially sequentially sequentially sequentially

Set<CharSequence>
uniqueWords = accumulate()

I HAKESPEARE /
get nput(fS "S)/ accumulate() Concurrent accumulate()
\\s+") Result Container

.parallelStream/ ()

.collect (ConcurrentHashSetCollector.toSet()) ;

Concurrent collectors (covered later) are different than non-concurrent collectors

End of Understand Java
Parallel Streams Internals:
Combining Results (Part 1)

16

