
Understand Java Parallel Streams Internals: Demo’

ing How to Configure the Common Fork-Join Pool

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals,
e.g.

• Know what can change & what can’t

• Partition a data source into “chunks”

• Process chunks in parallel via the
common fork-join pool

• Configure the Java parallel
stream common fork-join pool

• Know the performance impact of
configuring the common fork-join
pool size

Learning Objectives in this Part of the Lesson

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex20

Entering the test program with 12 cores

ex20: testDefaultDownloadBehavior() downloaded

and stored 42 images using 12 threads

in the pool

ex20: testAdaptiveMBDownloadBehavior()

downloaded and stored 42 images using

43 threads in the pool

ex20: testAdaptiveBTDownloadBehavior()

downloaded and stored 42 images using

43 threads in the pool

Printing 3 results from fastest to slowest

testAdaptiveBTDownloadBehavior() executed in

3598 msecs

testAdaptiveMBDownloadBehavior() executed in

3910 msecs

testDefaultDownloadBehavior() executed in

4104 msecs

Leaving the test program

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex20

3

Demo’ing Impact of
Configuring Common

Fork-Join Pool

4See prior lesson on “Java Parallel Stream Internals: Configuring the Common Fork-Join Pool”

Demo’ing Impact of Configuring Common Fork-Join Pool
• The common fork-join pool size can

be controlled programmatically

5

• The common fork-join pool size can
be controlled programmatically

• This demo applies the Managed
Blocker interface to adaptively add
new worker threads to the Java
common fork-join pool

Demo’ing Impact of Configuring Common Fork-Join Pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

File downloadAndStoreImageMB

(URL url) {

final Image[] image =

new Image[1];

...

ForkJoinPool

.managedBlock(new ForkJoinPool

.ManagedBlocker() {

public boolean block() {

image[0] =

downloadImage(url);

return true;

} ... });

return image[0].store(); ...

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

6

• This program shows the performance difference of using ManagedBlocker
versus not using ManagedBlocker for an I/O-intensive app

void testDownloadBehavior(Function<URL, File>

downloadAndStoreImage,

String testName) {

...

List<File> imageFiles = Options.instance()

.getUrlList()

.parallelStream()

.map(downloadAndStoreImage)

.collect(Collectors.toList());

printStats(testName, imageFiles.size()); ...

Demo’ing Impact of Configuring Common Fork-Join Pool

7

• This program shows the performance difference of using ManagedBlocker
versus not using ManagedBlocker for an I/O-intensive app

void testDownloadBehavior(Function<URL, File>

downloadAndStoreImage,

String testName) {

...

List<File> imageFiles = Options.instance()

.getUrlList()

.parallelStream()

.map(downloadAndStoreImage)

.collect(Collectors.toList());

printStats(testName, imageFiles.size()); ...

Demo’ing Impact of Configuring Common Fork-Join Pool

This function param is used to pass
different strategies for downloading &
storing images from remote websites

See en.wikipedia.org/wiki/Strategy_pattern

https://en.wikipedia.org/wiki/Strategy_pattern

8

• Results show increasing worker threads in the pool improves performance

See upcoming lessons on “The Java Fork-Join Pool: the ManagedBlocker Interface”

Entering the test program with 12 cores

ex20: testDefaultDownloadBehavior() downloaded and stored 42 images

using 12 threads in the pool

ex20: testAdaptiveMBDownloadBehavior() downloaded and stored 42 images

using 43 threads in the pool

ex20: testAdaptiveBTDownloadBehavior() downloaded and stored 42 images

using 43 threads in the pool

Printing 3 results from fastest to slowest

testAdaptiveBTDownloadBehavior() executed in 3598 msecs

testAdaptiveMBDownloadBehavior() executed in 3910 msecs

testDefaultDownloadBehavior() executed in 4104 msecs

Leaving the test program

Demo’ing Impact of Configuring Common Fork-Join Pool

9See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex20

Demo’ing Impact of Configuring Common Fork-Join Pool

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex20

10

End of Understand Java
Parallel Streams Internals:
Demo’ing How to Configure
the Common Fork-Join Pool

