Understand Java Parallel Streams Internals:

Parallel Processing w/the Gommon Fork-loin Pool

Douglas C. Schmidt
i.schmidt@uanderbiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson
« Understand parallel stream internals, e.g.

« Process chunks in parallel via the . | . |
common fork-join pool

InputString, 4 InputString, , [| InputString, 4 InputString, ,
I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially
A v
v,

See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

Processing Chunks in
Parallel via the Common
Fork-Join Pool

3

Processing Chunks in Parallel via the Common Fork-Join Pool
« Chunks created by a spliterator are processed in the common fork-join pool

Fork-Join Pool

Deque Deque Deque
Sub-Task,
Sub-Task, 3 Sub-Task; 4
Sub-Task, 4 Sub-Task; 4

See gee.cs.oswego.edu/dl/papers/fij.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in Parallel via the Common Fork-Join Pool

« A fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

Class ForkjoinPool

java.lang.Object
java.util.concurrent.AbstractExecutorService
java.util.concurrent.ForkjoinPool

All Implemented Interfaces:

Executor, ExecutorService

public class ForkJoinPool
extends AbstractExecutorService

An ExecutorService for running ForkJoinTasks. A ForkJoinPool provides the entry point for submissions from non-ForkJoinTask clients, as well as management and monitoring
operations.

A ForkJoinPool differs from other kinds of ExecutorService mainly by virtue of employing work-stealing: all threads in the pool attempt to find and execute tasks submitted to the pool
and/or created by other active tasks (eventually blocking waiting for work if none exist). This enables efficient processing when most tasks spawn other subtasks (as do most
ForkJoinTasks), as well as when many small tasks are submitted to the pool from external clients. Especially when setting asyncMode to true in constructors, ForkJoinPools may also be
appropriate for use with event-style tasks that are never joined.

A static commonPool () is available and appropriate for most applications. The common pool is used by any ForkJoinTask that is not explicitly submitted to a specified pool. Using the
common pool normally reduces resource usage (its threads are slowly reclaimed during periods of non-use, and reinstated upon subsequent use).

For applications that require separate or custom pools, a ForkJoinPool may be constructed with a given target parallelism level; by default, equal to the number of available processors.
The pool attempts to maintain enough active (or available) threads by dynamically adding, suspending, or resuming internal worker threads, even if some tasks are stalled waiting to join
others. However, no such adjustments are guaranteed in the face of blocked I/O or other unmanaged synchronization. The nested ForkJoinPool.ManagedBlocker interface enables
extension of the kinds of synchronization accommodated.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Processing Chunks in Parallel via the Common Fork-Join Pool

« A fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

« It provides a parallel computing engine for many higher-level frameworks

Parallel Streams Completable Futures
HEEEEE- - [HEEEEE- - [

N
o
WAl
:'_'_'.'i
o
:'_'_:l;
o
&

|
1
1 1
s - I
i fiter(not(this:uriCached)) i ForkJoinPool filter(not(this::uriCached))
i G i i | P—
! I
I 1 LR}
i| map(this::downloadimage) _|; map(this::downloadimageAsync)
1 1 1 | -
S B S
I : : I
i flatMap(this::applyFilters) i flatMap(this::applyFiltersAsync)
R V2 N &
E collect(toList()) |E collect(toFuture())

See www.infog.com/interviews/doug-lea-fork-join

http://www.infoq.com/interviews/doug-lea-fork-join

Processing Chunks in Parallel via the Common Fork-Join Pool

 ForkJoinPool implements the Executor <<Java Interface>>
Service interface @ Executor

<<Java Interface>>
% ExecutorService

<<Java Class>>
(& AbstractExecutorService

ﬁ; /\

<<Java Class>>
(9@ ThreadPoolExecutor <<Java Class>>
T (& ForkJoinPool

<<Java Class>>
(9 ScheduledThreadPoolExecutor

See docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

Processing Chunks in Parallel via the Common Fork-Join Pool

 ForkJoinPool implements the Executor Class ForkjoinTask<V>
Service interface

« A ForkJoinPool executes ForkJoinTasks

java.lang.Object
java.util.concurrent.ForkjoinTask<V>
All Implemented Interfaces:

Serializable, Future<V>

Direct Known Subclasses:

CountedCompleter, RecursiveAction,
RecursiveTask

public abstract class ForkJoinTask<V>
extends Object
implements Future<V>, Serializable

Abstract base class for tasks that run within a
ForkJoinPool. A ForkJoinTask is a thread-like
entity that is much lighter weight than a normal
thread. Huge numbers of tasks and subtasks may be
hosted by a small number of actual threads in a
Fork]JoinPool, at the price of some usage limitations.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

Processing Chunks in Parallel via the Common Fork-Join Pool

 ForkJoinPool implements the Executor Class ForkjoinTask<V>
Service interface

java.lang.Object
java.util.concurrent.ForkjoinTask<V=>

All Implemented Interfaces:

« ForkJoinTask associates a chunk of data | seriatizable, Future<vs
along with a computation on that data | oirect known subciasses:

CountedCompleter, RecursiveAction,
RecursiveTask

public abstract class ForkJoinTask<V>
extends Object
implements Future<V>, Serializable

Abstract base class for tasks that run within a
ForkJoinPool. A ForkJoinTask is a thread-like
entity that is much lighter weight than a normal
thread. Huge numbers of tasks and subtasks may be
hosted by a small number of actual threads in a
Fork]JoinPool, at the price of some usage limitations.

See www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismIn]ava.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismInJava.pdf

Processing Chunks in Parallel via the Common Fork-Join Pool
A ForkJoinTask is similar to—but lighter weight—than a Java Thread

ForkJoinTask

Thread

e.g., it omits its own run-time stack, registers, thread-local storage, etc.

Processing Chunks in Parallel via the Common Fork-Join Pool

A ForkJoinTask is similar to—but lighter weight—than a Java Thread
» A large # of ForkJoinTasks can thus

_ < S ForkJoinTasks 5 -5 .
run in a small # of Java worker < g | 5 %
threads in a ForkJoinPool S % < -5 % <

5 % 5 S = < s
¢ f % g F

\\\\\\\\
3 g VoL L 8

o
‘\ipOOl of worker thfeae

G, _»__/

See www.infog.com/interviews/doug-lea-fork-join

http://www.infoq.com/interviews/doug-lea-fork-join

Processing Chunks in Parallel via the Common Fork-Join Pool
 Parallel streams are a “user Deque Deque Deque

H n H
friendly” ForkJoinPool facade Sub-Task, ;
Search Phrases Sub-Task
) , - 1.2
. 5 e - Sub-Task, , Sub-Task; 5
___________-;I ————————————
@ ' Sub-Task, , ____ | Sub-Tasks,
| i

¢

i

See en.wikipedia.org/wiki/Facade pattern

https://en.wikipedia.org/wiki/Facade_pattern

Processing Chunks in Parallel via the Common Fork-Join Pool

« You can program directly to List<List<SearchResults>>
the ForkJoinPool API, though listOfListOfSearchResults =

it can be somewhat painfull ForkJoinPool .commonPool ()
' .invoke (new

SearchWithForkJoinTask

(inputList,
mPhrasesToFind, ...));
| gave you the
chance of But you have
programming elected the
Java streams way of pain!
willingly

'See espressoprogrammer.com/fork-join-vs-parallel-stream-java-8

http://espressoprogrammer.com/fork-join-vs-parallel-stream-java-8/

Processing Chunks in Parallel via the Common Fork-Join Pool

« You can program directly to List<List<SearchResults>>
the ForkJoinPool API, though listOfListOfSearchResults =

it can be somewhat painfull ForkJoinPool .commonPool ()
' .invoke (new

SearchWithForkJoinTask

(inputlist,
mPhrasesToFind, ...));
Use the Commgn for kf]O/n Input Strings to Search
pool to search input strings
for phrases that match - - - -
Search Phrases

See livelessons/streamgangs/SearchWithForkJoin.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchStreamGang/src/main/java/livelessons/streamgangs/SearchWithForkJoin.java

Processing Chunks in Parallel via the Common Fork-Join Pool

« ForkJoinPool is best used for Long compute() {

’ long count = OL;
programs that don’t match the List<RecursiveTask<Long>> forks =

parallel streams model new LinkedList<> () ;
for (Folder sub : mFolder.getSubs()) {
- o FolderSearchTask task = new
; FolderSearchTask (sub, mWord) ;

forks.add (task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {
DocSearchTask task =

new DocSearchTask (doc, mWord) ;

forks.add (task); task.fork();

}

for (RecursiveTask<Long> task : forks)
count += task.join();

return count;

See en.wikipedia.org/wiki/Divide-and-conguer algorithm

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

Processing Chunks in Parallel via the Common Fork-Join Pool

« ForkJoinPool is best used for Long compute () {

’ long count = OL;
programs that don’t match the List<RecursiveTask<Long>> forks =

parallel streams model new LinkedList<> () ;

° e.g.’ this program Counts the for (FOlder sub : mFOlder.getSUbS ()) {

. FolderSearchTask task = new
occurrence of a word in FolderSearchTask (sub, mWord) ;

document folders forks.add (task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {
DocSearchTask task =

new DocSearchTask (doc, mWord) ;

forks.add (task); task.fork();

}

for (RecursiveTask<Long> task : forks)
count += task.join();

return count;

See www.oracle.com/technetwork/articles/java/fork-join-422606.html

http://www.oracle.com/technetwork/articles/java/fork-join-422606.html

Processing Chunks in Parallel via the Common Fork-Join Pool

« ForkJoinPool is best used for Long compute() {

’ long count = OL;
programs that don’t match the List<RecursiveTask<Long>> forks =

parallel streams model new LinkedList<> () :

* e.g, this program counts the for (Folder sub : mFolder.getSubs()) {
FolderSearchTask task = new

occurrence of a word in FolderSearchTask (sub, mWord) ;
document folders forks.add (task); task.fork();
- - }
Create a linked list of for (Doc doc : mFolder.getDocs()) {
recursive task objects DocSearchTask task =

new DocSearchTask (doc, mWord) ;
forks.add (task); task.fork();
}
for (RecursiveTask<Long> task : forks)
count += task.join();
return count;

17

Processing Chunks in Parallel via the Common Fork-Join Pool

ForkJoinPool is best used for
programs that don’t match the
parallel streams model

* e.g., this program counts the
occurrence of a word in
document folders

Create & fork tasks to
search folders recursively

Long compute () {

long count = OL;
List<RecursiveTask<Long>> forks =
new LinkedList<>();
for (Folder sub : mFolder.getSubs()) {
FolderSearchTask task = new
FolderSearchTask (sub, mWord) ;
forks.add(task); task.fork();
}
for (Doc doc : mFolder.getDocs()) {
DocSearchTask task =
new DocSearchTask (doc, mWord) ;
forks.add (task); task.fork();
}
for (RecursiveTask<Long> task : forks)
count += task.join();
return count;

18

Processing Chunks in Parallel via the Common Fork-Join Pool

 ForkJoinPool is best used for
programs that don’t match the
parallel streams model

* e.g., this program counts the
occurrence of a word in
document folders

Create & fork tasks
to search documents

Long compute () {

long count = OL;
List<RecursiveTask<Long>> forks =
new LinkedList<>();
for (Folder sub : mFolder.getSubs()) {
FolderSearchTask task = new
FolderSearchTask (sub, mWord) ;
forks.add (task); task.fork();
}
for (Doc doc : mFolder.getDocs()) {
DocSearchTask task =
new DocSearchTask (doc, mWord) ;
forks.add(task); task.fork();
}
for (RecursiveTask<Long> task :
count += task.join();
return count;

forks)

19

Processing Chunks in Parallel via the Common Fork-Join Pool

ForkJoinPool is best used for Long compute() {

’ long count = OL;
programs that don’t match the List<RecursiveTask<Long>> forks =

parallel streams model new LinkedList<> () ;

° e.g.’ this program Counts the for (FOlder sub : mFOlder.getSUbS ()) {

occurrence Of 3 WOI‘d in FolderSearchTask task = new
FolderSearchTask (sub, mWord) ;

document folders forks.add (task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {
DocSearchTask task =

Join all the tasks together & new DocSearchTask (doc, mWord) ;
count the # of search matches forks.add (task); task.fork();

}

for (RecursiveTask<Long> task : forks)
count += task.join() ;
return count;

20

Processing Chunks in Parallel via the Common Fork-Join Pool

ForkJoinPool is best used for
programs that don't match the
parallel streams model

* e.g., this program counts the
occurrence of a word in
document folders

Return the final count

Long compute () {

long count = OL;
List<RecursiveTask<Long>> forks =
new LinkedList<>() ;
for (Folder sub : mFolder.getSubs()) {
FolderSearchTask task = new
FolderSearchTask (sub, mWord) ;
forks.add (task); task.fork();
}
for (Doc doc : mFolder.getDocs()) {
DocSearchTask task =
new DocSearchTask (doc, mWord) ;
forks.add (task); task.fork();
}
for (RecursiveTask<Long> task : forks)
count += task.join();
return count;

21

Processing Chunks in Parallel via the Common Fork-Join Pool

« All parallel streams in a process
share the common fork-join pool

See dzone.com/articles/common-fork-join-pool-and-streams

https://dzone.com/articles/common-fork-join-pool-and-streams

Processing Chunks in Parallel via the Common Fork-Join PooI

« All parallel streams in a process
share the common fork-join pool

» Helps optimize resource utilization %
by knowing what cores are being
used globally within a process

See dzone.com/articles/common-fork-join-pool-and-streams

https://dzone.com/articles/common-fork-join-pool-and-streams

Processing Chunks in Parallel via the Common Fork-Join Pool

« All parallel streams in a process
share the common fork-join pool

» Helps optimize resource utilization
by knowing what cores are being
used globally within a process

 This “global” vs “local” resource
management tradeoff is common
in computing & other domains

See blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

http://blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

Processing Chunks in Parallel via the Common Fork—Jom Pool

* There are few “knobs” to control this
(or any) fork-join pool

See www.infog.com/presentations/tecniqgues-parallelism-java

http://www.infoq.com/presentations/tecniques-parallelism-java

Processing Chunks in Parallel via the Common Fork-Join Poo

» There are few “knobs” to control this e
(Or d nY) fork'jOin pOOl & ForkloinPool()
& ForkJoinPool(int)
° Th I S SI m pl ICIty IS I ntentlona I . 2 :;)':I:;Jnocl:l:’zzll((l;lt:z:irj:il;\;\iTrkerThredFactory ,UncaughtExceptionHandler,boolean)

@ invoke(ForkJoinTask<T>)
o execute(ForkJoinTask<?>):void

(/p © execute(Runnable):void
%// E M E RG I N G TE C H N o LOG I E S © submit(ForkJoinTask<T>):ForkJoinTask<T>

@ submit(Callable<T>):ForkJoinTask<T>
© submit(Runnable, T):ForkJoinTask<T>
@ submit(Runnable):ForkJoinTask<?>
- . o . - @ invokeAll(Collection<Callable<T>>).List<Future<T>>
Engineering Concurrent Library Components o shutdown():void
@ shutdownNow():List<Runnable>
@ isTerminated():boolean
D O u I ea @ isTerminating():boolean
© isShutdown():boolean

@ awaitTermination(long, TimeUnit):boolean

See www.youtube.com/watch?v=sq0OMX3fHkro

https://www.youtube.com/watch?v=sq0MX3fHkro

Processing Chunks in Parallel via the Common Fork-Join Poo

* There are few “knobs” to control this
(or any) fork-join pool

e Contrast ForkJoinPool with
ThreadPoolExecutor

<< Java Classe»
® ThreadPoclExecutor

“<lava Clags=»

GWorker

@r

@t

uni):void

@ lock(:void

ryLock():boolean

@ unlock():void
@ isLocked{):boolean

& ThreadPoolExecutor(int int,long, TimeUnit, BlockingQueus <Runnables)
chhreadF'oolExecutnr(int,int,Iong,TimeUnit,BlockingQueue<RunnabIe>,ThreadFactor}r)
@ execute(Runnable):void

@ shutdown():void

@ shutdownMow()

@ isShutdown():boolean

@ isTerminating():boolean

@ isTerminated();boolean

@ awaitTermination(long, TimeUnit): boolean

@ setThreadFactory(ThreadFactory):void

@ getThreadFactory()

@ setRejectedExecutionHandler(RejectedExecutionHandler):void

@ getRejectedExecutionHandler()

@ setCorePoolSize(int):void

@ getCorePoolSize():int

@ prestartCoreThread():boolean

@ prestartAllCareThreads():int

@ allowsCoreThreadTimeOut(); boolean
@ allowCoreThreadTimeOut(boolean)vaid
@ setMaximumPoolSize(int):void

@ getMaximurmPoolSize(): int

@ setkeepAliveTime(long, TirmelUnit):void
@ getkeepAliveTime(TimeUnit):long

@ getQueue()

@ rermove(Runnable):boolean

@ purge():void

@ getPoolSizel):int

@ getActiveCount():int

@ getlargestPoolSize:int

@ getTaskCount():long

@ getCompletedTaskCount():long

@ toString()

27

Processing Chunks in Parallel via the Common Fork-Join Pool

« There are few “knobs” to control this Interface ForkJoinPool.ManagedBlocker
(or any) fork-join pool

Enclosing class:

ForkJoinPool

public static interface ForkJoinPool.ManagedBlocker

Interface for extending managed parallelism for tasks

° However, the S|Ze Of the common running in ForkJoinPools.
fork-join pool can be configured

System. setProperty
("java.util.concurrent"
+ " .ForkJoinPool.common"
+ ".parallelism",

"8") iT———— Setdesired # of threads

See upcoming lesson on “Java Parallel/ Stream Internals. Configuration”

End of Understand Java
Parallel Streams Internals:
Parallel Processing w/the
Common Fork-Join Pool

29

