
Understand Java Parallel Streams 

Internals: Introduction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand parallel stream internals

Learning Objectives in this Part of the Lesson

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

List<String>1.1 List<String>1.2 List<String>2.1 List<String>2.2

List<String>1 List<String>2

trySplit()

List<String>

trySplit() trySplit()

See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz


3

• Understand parallel stream internals, e.g.

• Know what can change & what can’t

Learning Objectives in this Part of the Lesson

See en.wikipedia.org/wiki/Serenity_Prayer

https://en.wikipedia.org/wiki/Serenity_Prayer


4

Why Knowledge of 
Parallel Streams Matters



5

• Converting a Java sequential stream 
to a parallel stream is usually quite 
straightforward

See “Java SearchWithParallelStreams Example”

Why Knowledge of Parallel Streams Matters
List<List<SearchResults>> 

processStream() {

return getInput()

.stream()

.map(this::processInput)

.collect(toList());

}

vs

Changing stream() calls to 
parallelStream() calls 

involves minuscule effort!!

List<List<SearchResults>> 

processStream() {

return getInput()

.parallelStream()

.map(this::processInput)

.collect(toList());

}



6See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

• However, knowledge of parallel streams internals will make you a better Java 
streams programmer!

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

List<String>1.1 List<String>1.2 List<String>2.1 List<String>2.2

List<String>1 List<String>2

trySplit()

List<String>

trySplit() trySplit()

When performance is 
critical, it's important
to understand how 

streams work internally

Why Knowledge of Parallel Streams Matters

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz


7See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream

Output 

f(x)

Output 

g(f(x))

…

Input x

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html


8

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream

• Split – Uses a spliterator to partition a 
data source into multiple chunks

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 

f(x)

Output 

g(f(x))

Input x



9

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream

• Split – Uses a spliterator to partition a 
data source into multiple chunks

• Apply – Independently processes these 
chunks in the common fork-join pool

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 

f(x)

Output 

g(f(x))

Input x



10

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream

• Split – Uses a spliterator to partition a 
data source into multiple chunks

• Apply – Independently processes these 
chunks in the common fork-join pool

• Combine – Joins partial sub-results into 
a single result

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 

f(x)

Output 

g(f(x))

Input x



11

Why Knowledge of Parallel Streams Matters
• Recall the 3 phases of a Java parallel stream

• Split – Uses a spliterator to partition a 
data source into multiple chunks

• Apply – Independently processes these 
chunks in the common fork-join pool

• Combine – Joins partial sub-results into 
a single result

…

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (reducer)

Stream factory operation ()

Output 

f(x)

Output 

g(f(x))

Input x

It’s important to which of these phases you can control & which you can’t!



12

End of Understand Java 
Parallel Stream Internals: 

Introduction


