
Learn How Java Parallel Streams

Work “Under the Hood”

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Know how aggregate operations & functional programming features are

applied in the parallel streams framework

• Learn how parallel stream phases
work “under the hood”

join joinjoin

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

trySplit()

trySplit() trySplit()

See developer.ibm.com/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/articles/j-java-streams-3-brian-goetz/

3

Overview of How a
Parallel Stream Works

4

• A Java parallel stream implements
a “map/reduce” variant optimized
for multi-core processors

See en.wikipedia.org/wiki/MapReduce

Overview of How a Parallel Stream Works

Reduce

Map

Partition

http://en.wikipedia.org/wiki/MapReduce

5

• A Java parallel stream implements
a “map/reduce” variant optimized
for multi-core processors

• It’s actually a three phase
“split-apply-combine”
data processing strategy

See www.jstatsoft.org/article/view/v040i01

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

http://www.jstatsoft.org/article/view/v040i01

6

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

See en.wikipedia.org/wiki/Divide_and_conquer_algorithm

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

7See upcoming lesson on “Java Parallel Stream Internals: Partitioning”

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

Each chunk is an independent &
“atomic” subset of the data source

8

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

• Spliterators partition
collections in Java

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? Super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics();

}

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html

9

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

• Spliterators partition
collections in Java

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? Super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics();

}

Used for sequential
(& parallel) streams

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#tryAdvance

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#tryAdvance-java.util.function.Consumer-

10

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

• Spliterators partition
collections in Java

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? Super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics();

}

Used only for
parallel streams

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit--

11

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

• Spliterators partition
collections in Java

• Each Java collection
has a spliterator

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

interface Collection<E> {

...

default Spliterator<E> spliterator() {

return Spliterators.spliterator(this, 0);

}

default Stream<E> parallelStream() {

return StreamSupport.stream(spliterator(), true);

}

...

}

See docs.oracle.com/javase/8/docs/api/java/util/Collection.html

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html

12

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

• Spliterators partition
collections in Java

• Each Java collection
has a spliterator

• Programmers can define
custom spliterators

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator

13

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

• Spliterators partition
collections in Java

• Each Java collection
has a spliterator

• Programmers can define
custom spliterators

• Parallel streams perform better
on data sources that can be
split efficiently & evenly

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

See www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

http://www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

14

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works

See lesson on “Java Parallel Stream Internals: Parallel Processing via the Common ForkJoinPool”

15

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

Splitting & applying run simultaneously (after certain limits met), not sequentially

Overview of How a Parallel Stream Works

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

trySplit()

trySplit() trySplit()

16

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

• Utilization’s maximized
via “work-stealing”

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works

See lesson on “Java Parallel Stream Internals: Mapping onto the Common ForkJoinPool”

17

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

• Utilization’s maximized
via “work-stealing”

• Programmers can control
of threads in the pool

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works

See lesson on “Java Parallel Stream Internals: Configuring the Common Fork-Join Pool”

18See upcoming lessons on “Java Parallel Stream Internals: Combining Results”

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works
• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

3. Combine – Join partial
results to a single result

19

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

See www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works
• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

3. Combine – Join partial
results to a single result

• Performed by terminal
operations

• e.g., collect() & reduce()

http://www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

20

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

See lessons on “Java Parallel Stream Internals: Non-Concurrent & Concurrent Collectors”

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works
• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

3. Combine – Join partial
results to a single result

• Performed by terminal
operations

• Collectors can either be

• Concurrent – synchronized

• Non-concurrent – non-synchronized

21

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Programmers can define custom collectors

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works
• The split-apply-combine phases are:

1. Split – Recursively partition a
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

3. Combine – Join partial
results to a single result

• Performed by terminal
operations

• Collectors can either be

• Concurrent – synchronized

• Non-concurrent – non-synchronized

22

End of Learn How Java
Parallel Streams Work

“Under the Hood”

