Learn How Java Parallel Streams Work "Under the Hood"

Douglas C. Schmidt

<u>d.schmidt@vanderbilt.edu</u>

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

• Know how aggregate operations & functional programming features are applied in the parallel streams framework

DataSource

• Learn how parallel stream phases

TrySplit()

**TrySplit

See developer.ibm.com/articles/j-java-streams-3-brian-goetz

DataSource_{2,2}

Process

sequentially

See en.wikipedia.org/wiki/MapReduce

- A Java parallel stream implements **DataSource**
 - a "map/reduce" variant optimized for multi-core processors It's actually a three phase
 - "split-apply-combine" data processing strategy

• The split-apply-combine phases are:

CollectionData

1. Split — Recursively partition a data source into "chunks"

CollectionData

CollectionData

CollectionData

trySplit()

trySplit()

See en.wikipedia.org/wiki/Divide_and_conquer_algorithm

• The split-apply-combine phases are: CollectionData

CollectionData₁

trySplit()

- The split-apply-combine phases are: CollectionData
 - **1. Split** Recursively partition a

data source into "chunks"

Spliterators partition collections in Java

```
CollectionData<sub>1.1</sub>
CollectionData<sub>1.2</sub>

CollectionData<sub>2.2</sub>

public interface Spliterator<T> {
   boolean tryAdvance(Consumer<? Super T> action);
   Spliterator<T> trySplit();
   long estimateSize();
   int characteristics();
}
```

trySplit()

Collection Data₂

trySplit()

- The split-apply-combine phases are: CollectionData
 - **1. Split** Recursively partition a data source into "chunks"
 - Spliterators partition collections in Java

```
CollectionData<sub>1.1</sub>

CollectionData<sub>1.2</sub>

CollectionData<sub>2.1</sub>

public interface Spliterator<T> {
   boolean tryAdvance(Consumer<? Super T> action);

We parallel) streams

Spliterator<T> trySplit();
   long estimateSize();
   int characteristics();
}
```

CollectionData₁

trySplit()

trySplit()

CollectionData₂

trySplit()

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#tryAdvance

- The split-apply-combine phases are: CollectionData
- **1. Split** Recursively partition a data source into "chunks"
 - Spliterators partition

```
trySplit()
                                                                                   trySplit()
collections in Java
                                                    CollectionData<sub>1,2</sub>
                                  Collection Data<sub>1</sub>
                                                                       Collection Data 2 1
                                                                                          Collection Data<sub>2,2</sub>
                                     public interface Spliterator<T> {
                                        boolean tryAdvance(Consumer<? Super T> action);
                                        Spliterator<T> trySplit();
     Used only for
                                        long estimateSize();
    parallel streams
                                        int characteristics();
```

CollectionData₁

trySplit()

CollectionData₂

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit

- The split-apply-combine phases are:

 InputString
- 1. Split Recursively partition a

data source into "chunks"

- Spliterators partition collections in Java
- collections in JavaEach Java collection

has a spliterator

trySplit() InputString₁ InputString₂ trySplit() trySplit() InputString_{1,1} InputString_{1,2} InputString_{2 1} InputString_{2,2} interface Collection<E> { default Spliterator<E> spliterator() { return Spliterators.spliterator(this, 0); default Stream<E> parallelStream() { return StreamSupport.stream(spliterator(), true);

- The split-apply-combine phases are:
 - 1. Split Recursively partition a data source into "chunks"
 - Spliterators partition collections in Java
 - Each Java collection has a spliterator
 - Programmers can define custom spliterators

InputString_{1,1}

- The split-apply-combine phases are:
 - **1. Split** Recursively partition a data source into "chunks"
 - Spliterators partition collections in Java
 - Each Java collection has a spliterator
 - Programmers can define custom spliterators
 - Parallel streams perform better on data sources that can be split efficiently & evenly

See www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

- The split-apply-combine phases are:

 InputString
- The split-apply-combine phases are:
 1. Split Recursively partition a
 - data source into "chunks"
 - **2. Apply** Process chunks in a common thread pool

See lesson on "Java Parallel Stream Internals: Parallel Processing via the Common ForkJoinPool"

Splitting & applying run simultaneously (after certain limits met), not sequentially

• The split-apply-combine phases are: **InputString 1. Split** – Recursively partition a data source into "chunks" InputString₁ InputString₂ 2. Apply – Process chunks in a common thread pool InputString_{1,2} InputString_{2,2} InputString_{1 1} InputString_{2 1} Utilization's maximized **Process Process Process Process** via "work-stealing" sequentially sequentially sequentially sequentially A pool of worker threads

See lesson on "Java Parallel Stream Internals: Mapping onto the Common ForkJoinPool"

See lesson on "Java Parallel Stream Internals: Configuring the Common Fork-Join Pool"

 The split-apply-combine phases are: **InputString 1. Split** – Recursively partition a data source into "chunks" InputString₁ InputString₂ 2. Apply – Process chunks in a common thread pool InputString_{1 1} InputString_{1,2} InputString_{2,2} InputString_{2 1} **3. Combine** – Join partial Process Process **Process Process** results to a single result sequentially sequentially sequentially sequentially join

See upcoming lessons on "Java Parallel Stream Internals: Combining Results"

- **InputString**
- The split-apply-combine phases are:
 - **1. Split** Recursively partition a data source into "chunks"
 - 2. Apply Process chunks in a common thread pool
 - **3. Combine** Join partial results to a single result
 - Performed by terminal operations
 - e.g., collect() & reduce()

See www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

- The split-apply-combine phases are:

 InputString
 - 1. Split Recursively partition a
 - data source into "chunks"

 2. Apply Process chunks in a common thread pool
 - **3. Combine** Join partial results to a single result

Performed by terminal

- operations
- Collectors can either be
 - Concurrent synchronized
 - Non-concurrent non-synchronized

See lessons on "Java Parallel Stream Internals: Non-Concurrent & Concurrent Collectors"

- The split-apply-combine phases are:
 - Split Recursively partition a data source into "chunks"
 - 2. Apply Process chunks in a common thread pool
 - **3. Combine** Join partial results to a single result
 - Performed by terminal operations
 - Collectors can either be
 - Concurrent synchronized
 - Non-concurrent non-synchronized

Programmers can define custom collectors

End of Learn How Java Parallel Streams Work "Under the Hood"