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Learning Objectives in this Part of the Lesson
• Know how aggregate operations & functional programming features are 

applied in the parallel streams framework

• Learn how parallel stream phases
work “under the hood”
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See developer.ibm.com/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/articles/j-java-streams-3-brian-goetz/
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Overview of How a 
Parallel Stream Works
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• A Java parallel stream implements
a “map/reduce” variant optimized 
for multi-core processors 

See en.wikipedia.org/wiki/MapReduce

Overview of How a Parallel Stream Works

Reduce

Map

Partition

http://en.wikipedia.org/wiki/MapReduce
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• A Java parallel stream implements
a “map/reduce” variant optimized 
for multi-core processors 

• It’s actually a three phase
“split-apply-combine” 
data processing strategy 

See www.jstatsoft.org/article/view/v040i01
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Overview of How a Parallel Stream Works

http://www.jstatsoft.org/article/view/v040i01
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”
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CollectionData

See en.wikipedia.org/wiki/Divide_and_conquer_algorithm
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Overview of How a Parallel Stream Works

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”
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Overview of How a Parallel Stream Works

Each chunk is an independent & 
“atomic” subset of the data source
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

• Spliterators partition 
collections in Java 

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html
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Overview of How a Parallel Stream Works

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? Super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics(); 

}

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

• Spliterators partition 
collections in Java 

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? Super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics(); 

}

Used for sequential 
(& parallel) streams

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#tryAdvance

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#tryAdvance-java.util.function.Consumer-
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

• Spliterators partition 
collections in Java 

CollectionData1.1 CollectionData1.2 CollectionData2.1 CollectionData2.2

CollectionData1 CollectionData2

CollectionData

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

public interface Spliterator<T> {

boolean tryAdvance(Consumer<? Super T> action);

Spliterator<T> trySplit();

long estimateSize();

int characteristics(); 

}

Used only for 
parallel streams

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit--
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

• Spliterators partition 
collections in Java 

• Each Java collection
has a spliterator
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InputString
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Overview of How a Parallel Stream Works

interface Collection<E> {

...

default Spliterator<E> spliterator() {

return Spliterators.spliterator(this, 0);

}

default Stream<E> parallelStream() {

return StreamSupport.stream(spliterator(), true);

}

...

}

See docs.oracle.com/javase/8/docs/api/java/util/Collection.html

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

• Spliterators partition 
collections in Java 

• Each Java collection
has a spliterator

• Programmers can define 
custom spliterators

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchStreamSpliterator
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

• Spliterators partition 
collections in Java 

• Each Java collection
has a spliterator

• Programmers can define 
custom spliterators

• Parallel streams perform better 
on data sources that can be 
split efficiently & evenly

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

See www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams

trySplit()

trySplit() trySplit()

Overview of How a Parallel Stream Works

http://www.airpair.com/java/posts/parallel-processing-of-io-based-data-with-java-streams
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works

See lesson on “Java Parallel Stream Internals: Parallel Processing via the Common ForkJoinPool”
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Process
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

Splitting & applying run simultaneously (after certain limits met), not sequentially

Overview of How a Parallel Stream Works

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

trySplit()

trySplit() trySplit()
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Process
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Process
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• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

• Utilization’s maximized 
via “work-stealing”

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works

See lesson on “Java Parallel Stream Internals: Mapping onto the Common ForkJoinPool”



17

Process
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Process
sequentially

Process
sequentially

Process
sequentially

• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

• Utilization’s maximized 
via “work-stealing”

• Programmers can control
# of threads in the pool

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works

See lesson on “Java Parallel Stream Internals: Configuring the Common Fork-Join Pool”



18See upcoming lessons on “Java Parallel Stream Internals: Combining Results”

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works
• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

3. Combine – Join partial 
results to a single result
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join join

join
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See www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

InputString

Overview of How a Parallel Stream Works
• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

3. Combine – Join partial 
results to a single result

• Performed by terminal 
operations

• e.g., collect() & reduce()

http://www.codejava.net/java-core/collections/java-8-stream-terminal-operations-examples
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join join

join
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See lessons on “Java Parallel Stream Internals: Non-Concurrent & Concurrent Collectors”
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InputString

Overview of How a Parallel Stream Works
• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

3. Combine – Join partial 
results to a single result

• Performed by terminal 
operations

• Collectors can either be 

• Concurrent – synchronized

• Non-concurrent – non-synchronized 
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join join

join
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Programmers can define custom collectors
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Overview of How a Parallel Stream Works
• The split-apply-combine phases are:

1. Split – Recursively partition a 
data source into “chunks”

2. Apply – Process chunks in
a common thread pool

3. Combine – Join partial 
results to a single result

• Performed by terminal 
operations

• Collectors can either be 

• Concurrent – synchronized

• Non-concurrent – non-synchronized 
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End of Learn How Java 
Parallel Streams Work 

“Under the Hood”


