
Evaluating the Java Sequential 

SearchStreamGang Case Study

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Know how to apply sequential streams to the SearchStreamGang program

• Recognize how a Spliterator is used 
in SearchWithSequentialStreams

• Understand the pros & cons of the 
SearchWithSequentialStreams class

See livelessons/streamgangs/SearchWithSequentialStreams.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchStreamGang/src/main/java/livelessons/streamgangs/SearchWithSequentialStream.java


3

Pros of the SearchWith
SequentialStreams Class



4

Pros of the SearchWithSequentialStreams Class
• There are several benefits with this sequential streams implementation

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase -> searchForPhrase

(phrase, input, title, false))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; 

}



5

Pros of the SearchWithSequentialStreams Class
• There are several benefits with this sequential streams implementation

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase -> searchForPhrase

(phrase, input, title, false))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; 

}

See www.javabrahman.com/java-8/java-8-internal-iterators-vs-external-iterators

Java streams use “internal” iterators vs. 
“external” iterators used by collections.

http://www.javabrahman.com/java-8/java-8-internal-iterators-vs-external-iterators


6

Pros of the SearchWithSequentialStreams Class

Internal iterators shield programs from streams processing implementation details 

• There are several benefits with this sequential streams implementation

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase -> searchForPhrase

(phrase, input, title, false))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; 

}



7

Pros of the SearchWithSequentialStreams Class
• There are several benefits with this sequential streams implementation

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase -> searchForPhrase

(phrase, input, title, false))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; 

}

There are no explicit control constructs or memory allocations in this pipeline!

This code is declarative since it is a pipeline of 
transformations performed by aggregate operations



8

Pros of the SearchWithSequentialStreams Class

Focus on “what” operations to perform, rather than on “how” they’re implemented

What

How

• There are several benefits with this sequential streams implementation

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase -> searchForPhrase

(phrase, input, title, false))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; 

}



9

• There are several benefits with this sequential streams implementation

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase -> searchForPhrase

(phrase, input, title, false))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; 

}

Pros of the SearchWithSequentialStreams Class

These behaviors have no side-effects



10

Pros of the SearchWithSequentialStreams Class

No side-effects makes it easier to reason about behavior & enables optimization

• There are several benefits with this sequential streams implementation

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase -> searchForPhrase

(phrase, input, title, false))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; 

}



11

Cons of the SearchWith
SequentialStreams Class



12

• The sequential implementation can’t take 
advantage of multi-core processors

Cons of the SearchWithSequentialStreams Class

Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs
PARALLEL_STREAMS executed in 437 msecs
PARALLEL_STREAM_PHASES executed in 440 msecs
RXJAVA_PHASES executed in 485 msecs
PARALLEL_STREAM_INPUTS executed in 802 msecs
RXJAVA_INPUTS executed in 866 msecs
SEQUENTIAL_LOOPS executed in 1638 msecs
SEQUENTIAL_STREAM executed in 1958 msecs
Ending SearchStreamGangTest

Tests conducted on a quad-core Lenovo P50 with 32 Gbytes of RAM

45,000+ phrases

Search Phrases

Input Strings to Search

…



13

• The sequential implementation can’t take 
advantage of multi-core processors

• Parallel streams can often provide
a significant performance boost!

Cons of the SearchWithSequentialStreams Class

Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs
PARALLEL_STREAMS executed in 437 msecs
PARALLEL_STREAM_PHASES executed in 440 msecs
RXJAVA_PHASES executed in 485 msecs
PARALLEL_STREAM_INPUTS executed in 802 msecs
RXJAVA_INPUTS executed in 866 msecs
SEQUENTIAL_LOOPS executed in 1638 msecs
SEQUENTIAL_STREAM executed in 1958 msecs
Ending SearchStreamGangTest

See upcoming lessons on “Java Parallel Streams”

45,000+ phrases

Search Phrases

Input Strings to Search

…



14

• This class only used a few Java aggregate operations 

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase 

-> searchForPhrase(phrase, input, title))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; ...

Cons of the SearchWithSequentialStreams Class



15

• This class only used a few Java aggregate operations 

List<SearchResults> processInput(CharSequence inputSeq) {

String title = getTitle(inputString);

CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind

.stream()

.map(phrase 

-> searchForPhrase(phrase, input, title))

.filter(not(SearchResults::isEmpty))

.collect(toList());

return results; ...

Cons of the SearchWithSequentialStreams Class

However, these aggregate operations are also useful for parallel streams



16See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

• Many other aggregate operations are part of the Java stream API

Cons of the SearchWithSequentialStreams Class

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html


17See “Java Parallel ImageStreamGang Example”

• Many other aggregate operations are part of the Java stream API, e.g.

Cons of the SearchWithSequentialStreams Class

SocketSocket

List of URLs to Download

…
List of Transforms to Apply

Persistent 

Data Store

This case study program downloads, 
transforms, stores, & displays images



18

End of Evaluating the Java 
Sequential SearchStreamGang

Case Study


