searchdtreamGang Gase Study

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

oo

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the pros & cons of the
SearchWithSequentialStreams class

<<Java Class>>
(® SearchWithSequentialStreams

< processStream():List<List<SearchResults>>
m processinput(String):List<SearchResults>

See livelessons/streamgangs/SearchWithSe

uentialStreams.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchStreamGang/src/main/java/livelessons/streamgangs/SearchWithSequentialStream.java

Pros of the SearchWith
SequentialStreams Class

Pros of the SearchWithSequentialStreams Class

« There are several benefits with this sequential streams implementation
List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle(inputString);
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind
.stream()
.map (phrase -> searchForPhrase —

(phrase, input, title, false)) ~
_J’

.filter (not (SearchResults: :isEmpty)) ‘EEZT&
.collect (toList()) ; -
return results; ﬁ

}

Pros of the SearchWithSequentialStreams Class

« There are several benefits with this sequential streams implementation
List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle(inputString);
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind
.stream()
.map (phrase -> searchForPhrase
(phrase, input, title, false))

.filter(not(SearchResults::isEmpty);\\\\\\\\

.collect (toList()) ; Java streams use “internal” iterators vs.
return results; “external” iterators used by collections.

}

See www.javabrahman.com/java-8/java-8-internal-iterators-vs-external-iterators

http://www.javabrahman.com/java-8/java-8-internal-iterators-vs-external-iterators

Pros of the SearchWithSequentialStreams Class

« There are several benefits with this sequential streams implementation
List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle(inputString);
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind
.stream()
.map (phrase -> searchForPhrase
(phrase, input, title, false))

.filter (not (SearchResults: :isEmpty))

.collect(toList()) ;
return results;

}

Internal iterators shield programs from streams processing implementation details

Pros of the SearchWithSequentialStreams Class

« There are several benefits with this sequential streams implementation

List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle(inputString) ;
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind
.stream()
.map (phrase -> searchForPhrase
(phrase, input, title, false))

.filter (not (SearchResults: :isEmpty))

AN

.collect(toList()) ;

This code is declarative since it is a pipeline of
return results;

transformations performed by aggregate operations

}

There are no explicit control constructs or memory allocations in this pipeline!

Pros of the SearchWithSequentialStreams Class

« There are several benefits with this sequential streams implementation
List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle(inputString);
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind
.stream/()
.map (phrase -> searchForPhrase
(phrase, input, title, false))

.filter (not (SearchResults: :isEmpty))

.collect(toList()) ;
return results;

}

Focus on “what” operations to perform, rather than on “how” they’re implemented

Pros of the SearchWithSequentialStreams Class

« There are several benefits with this sequential streams implementation

List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle(inputString) ;
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind
.stream/()
.map (phrase -> searchForPhrase
(phrase, input, title, false))

.filter (not (SearchResults: :isEmpty))

.collect(toList()) ; \\\\\\\\

These behaviors have no side-effects

return results;

Pros of the SearchWithSequentialStreams Class

« There are several benefits with this sequential streams implementation
List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle(inputString);
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind
.stream/()
.map (phrase -> searchForPhrase
(phrase, input, title, false))

.filter (not (SearchResults: :isEmpty))

.collect (toList()) ;
return results;

}

No side-effects makes it easier to reason about behavior & enables optimization

Cons of the SearchWith
SequentialStreams Class

11

Cons of the SearchWithSequentialStreams Class

» The sequential implementation can't take
advantage of multi-core processors

Input Strings to Search

Search Phrases

Starting SearchStreamGangTest

PARALLEL SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs

PARALLEL_STREAMS executed in 437 msecs
PARALLEL _STREAM_PHASES executed in 440 msecs
RXJAVA PHASES executed in 485 msecs
PARALLEL STREAM_INPUTS executed in 802 msecs
RXJAVA INPUTS executed in 866 msecs

SE UENTIAL STREAM executed in 1958 msecs
Ending SearchStreamGangTest

Tests conducted on a quad-core Lenovo P50 with 32 Gbytes of RAM

Cons of the SearchWithSequentialStreams Class

« The sequential implementation can’t take Input Strings to Search
advantage of multi-core processors - - - -
. Par.aIIe_I.streams can often provide Search Phrases
a significant performance boost! TR

PARALLEL SPLITERATOR executed in 409 msecs
SV ABLCE FUTUR NPU executed In 426 msecs

QMDD D DLLA ad in 427 msecs
PARALLEL STREAMS executed in 437 msecs
AR A - AY\V/ HHA AYE uted in 44 mSeCS
RXJAVA_PHASES executed in 485 msecs
PARALLEL STREAM_INPUTS executed in 802 msecs
RXJAVA_INPUTS executed in 866 msecs
SEQUENTIAL_LOOPS executed in 1638 msecs
SEQUENTIAL_STREAM executed in 1958 msecs
Ending SearchStreamGangTest

See upcoming lessons on “Java Parallel/ Streams’

Cons of the SearchWithSequentialStreams Class

 This class only used a few Java aggregate operations
List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle (inputString);
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> results = mPhrasesToFind
.stream/()
.map (phrase
-> searchForPhrase (phrase, input, title))

.filter (not (SearchResults: :isEmpty))

.collect (toList()) ;
return results;

14

Cons of the SearchWithSequentialStreams Class

 This class only used a few Java aggregate operations
List<SearchResults> processInput (CharSequence inputSeq) {
String title = getTitle (inputString) ;
CharSequence input = inputSeq.subSequence(...);

List<SearchResults> resultdm
.stream/() ;
.map (phrase

-> searchForPhrase (

.filter (not (SearchResults

.collect (toList()) ;
return results;

However, these aggregate operations are also useful for parallel streams

Cons of the SearchWithSequentialStreams Class

« Many other aggregate operations are part of the Java stream API

Modifier and Type Method and Description
boolean allMatch(Predicate<? super T> predicate)
Returns whether all elements of this stream match the provided predicate
boolean anyMatch(Predicate<? super T> predicate)
Returns whether any elements of this stream match the provided predicate
static <T> Stream.Builder<T> builder()
Returns a builder for a Stream
<R,A> R collect(Collector<? super T,A,R> collector)
Performs a mutable reduction operation on the elements of this stream using a Collector
<R> R collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R> combiner)
Performs a mutable reduction operation on the elements of this stream
static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)
Creates a lazily concatenated stream whose elements are all the elements of the first stream followed by all the elements of the second stream.
long count()
Returns the count of elements in this stream.
Stream<T> distinct()
Returns a stream consisting of the distinct elements (according to Object.equals(Object)) of this stream.
static <T> Stream<T> empty()
Returns an empty sequential Stream.
Stream<T> filter(Predicate<? super T> predicate)
Returns a stream consisting of the elements of this stream that match the given predicate.
Optional<T> findAny()
Returns an Optional describing some element of the stream, or an empty Optional if the stream is empty
Optional<T> findFirst()
Returns an Optional describing the first element of this stream, or an empty Optional if the stream is empty
<R> Stream<R> flatMap(Function<? super T,? extends Stream<? extends R>> mapper)

Returns a stream consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping
function to each element

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Cons of the SearchWithSequentialStreams Class

« Many other aggregate operations are part of the Java stream API, e.qg.

This case study program downloads,
transforms, stores, & displays images

List of URLs to Download Deque Deque Deque
[. |
| Sub-Task, Persistent
List of Transforms to Apply —’é’ oo Data Store
LI SN '

4 bool of worker threaS2

Sckt

See '“Java Parallel ImageStreamGang Example”

End of Evaluating the Java
Sequential SearchStreamGang
Case Study

18

