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Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of non-concurrent collectors for 

sequential streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html
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Overview of Non-
Concurrent Collectors
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• The collect() terminal operation 
uses a collector to accumulate 
stream elements into mutable 
result containers.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors
void runCollectToList() {

List<String> characters = Arrays

.asList("horatio", "laertes",

"Hamlet, ...);

List<String> results =

characters

.stream()

.filter(s -> 

toLowerCase(…) =='h') 

.map(this::capitalize)

.sorted()

.collect(toList()); ...

Collect the results into a ArrayList

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html
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• The collect() terminal operation 
uses a collector to accumulate 
stream elements into mutable 
result containers.

• Collector is defined by a 
generic interface

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Overview of Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html


7

• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics

• This distinction is only relevant for
parallel streams filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…

Overview of Non-Concurrent Collectors
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• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics

• This distinction is only relevant for
parallel streams

• Our focus here is on non-concurrent
collectors for sequential streams

Non-concurrent & concurrent collectors for parallel streams are covered later

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…

Overview of Non-Concurrent Collectors
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• A non-concurrent collector for a sequential 
stream simply accumulates elements into a 
mutable result container

Overview of Non-Concurrent Collectors
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• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

Overview of Non-Concurrent Collectors
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• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

A spliterator partitions one input 
source into a stream of elements

Overview of Non-Concurrent Collectors
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• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

A collector combines a stream of 
elements back into a single result

Overview of Non-Concurrent Collectors
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End of Understand 
Java Streams Non-

Concurrent Collectors


