
Understand Java Streams 

Non-Concurrent Collectors 

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of non-concurrent collectors for 

sequential streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html


3

Overview of Non-
Concurrent Collectors



4

• The collect() terminal operation 
uses a collector to accumulate 
stream elements into mutable 
result containers.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors
void runCollectToList() {

List<String> characters = Arrays

.asList("horatio", "laertes",

"Hamlet, ...);

List<String> results =

characters

.stream()

.filter(s -> 

toLowerCase(…) =='h') 

.map(this::capitalize)

.sorted()

.collect(toList()); ...

Collect the results into a ArrayList

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html


5

• The collect() terminal operation 
uses a collector to accumulate 
stream elements into mutable 
result containers.

• Collector is defined by a 
generic interface

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html


6

• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Overview of Non-Concurrent Collectors

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html


7

• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics

• This distinction is only relevant for
parallel streams filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…

Overview of Non-Concurrent Collectors



8

• Collector implementations can either be
non-concurrent or concurrent based 
on their characteristics

• This distinction is only relevant for
parallel streams

• Our focus here is on non-concurrent
collectors for sequential streams

Non-concurrent & concurrent collectors for parallel streams are covered later

filter(not(this::urlCached))

collect(toList())

map(this::downloadImage)

flatMap(this::applyFilters)

…

Overview of Non-Concurrent Collectors



9

• A non-concurrent collector for a sequential 
stream simply accumulates elements into a 
mutable result container

Overview of Non-Concurrent Collectors



10

• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

Overview of Non-Concurrent Collectors



11

• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

A spliterator partitions one input 
source into a stream of elements

Overview of Non-Concurrent Collectors



12

• A collector is essentially the inverse 
of a spliterator

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

A collector combines a stream of 
elements back into a single result

Overview of Non-Concurrent Collectors



13

End of Understand 
Java Streams Non-

Concurrent Collectors


