Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality of non-concurrent collectors for

sequential streams

Interface Collector<T,A,R>

Type Parameters:

T - the type of input elements to the reduction operation

A - the mutable accumulation type of the reduction operation (often hidden as
an implementation detail)

R - the result type of the reduction operation

public interface Collector<T,A,R>

A mutable reduction operation that accumulates input elements into a mutable result
container, optionally transforming the accumulated result into a final representation after
all input elements have been processed. Reduction operations can be performed either
sequentially or in parallel.

Examples of mutable reduction operations include: accumulating elements into a
Collection; concatenating strings using a StringBuilder; computing summary
information about elements such as sum, min, max, or average; computing "pivot table"
summaries such as "maximum valued transaction by seller", etc. The class Collectors
provides implementations of many common mutable reductions.

A Collector is specified by four functions that work together to accumulate entries into a
mutable result container, and optionally perform a final transform on the result. They are:

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-
Concurrent Collectors

Overview of Non-Concurrent Collectors

« The collect() terminal operation void runCollectToList() {

uses a collector to accumulate List<String> characters = Arrays
stream elements into mutable astistinoratiof, Tlaertest,
result containers. amlet, ...);

List<String> results =

characters
.stream()
.filter(s ->
toLowerCase(..) =='h"')
.map (this: :capitalize)
.sorted()

.collect(toList()) ;

Collect the results into a ArrayList /

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors

» The collect() terminal operation
uses a collector to accumulate
stream elements into mutable
result containers.

« Collector is defined by a
generic interface

C P

Interface Collector<T,A,R>

Type Parameters:

T - the type of input elements to the reduction operation

A - the mutable accumulation type of the reduction operation (often hidden as
an implementation detail)

R - the result type of the reduction operation

public interface Collector<T,A,R>

A mutable reduction operation that accumulates input elements into a mutable result
container, optionally transforming the accumulated result into a final representation after
all input elements have been processed. Reduction operations can be performed either
sequentially or in parallel.

Examples of mutable reduction operations include: accumulating elements into a
Collection; concatenating strings using a StringBuilder; computing summary
information about elements such as sum, min, max, or average; computing "pivot table"
summaries such as "maximum valued transaction by seller", etc. The class Collectors
provides implementations of many common mutable reductions.

A Collector is specified by four functions that work together to accumulate entries into a
mutable result container, and optionally perform a final transform on the result. They are:

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

Overview of Non-Concurrent Collectors

« Collector implementations can either be |enum coliector.characteristics
non-concurrent or concurrent based

java.util.stream.Collector.Characteristics

on their characteristics

Serializable, Comparable<Collector.Characteristics>

Enclosing interface:
Collector<T,A,R>

public static enum Collector.Characteristics
extends Enum<Collector.Characteristics>

Characteristics indicating properties of a Collector, which can be used to optimize
reduction implementations

Enum Constant Summary

Enum Constants

Enum Constant and Description

CONCURRENT

Indicates that this collector is concurrent, meaning that the result container can
support the accumulator function being called concurrently with the same result
container from multiple threads.

IDENTITY_FINISH
Indicates that the finisher function is the identity function and can be elided.

UNORDERED
Indicates that the collection operation does not commit to preserving the encounter
order of input elements

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.Characteristics.html

Overview of Non-Concurrent Collectors

 Collector implementations can either be
non-concurrent or concurrent based - - [

on their characteristics i-;g“ﬁ“%‘“‘ii“;-:“‘ii-:é“

 This distinction is only relevant for _ —
parallel streams f||ter(no_t(th|s::urIC_ached)) _

map(this::downloadimage)

Overview of Non-Concurrent Collectors

 Collector implementations can either be
non-concurrent or concurrent based MNCNNE... O
on their characteristics Pm=— o T U """""""""""

filter(not(this::urlCached))

~>

map(this::downloadimage)

o

« Our focus here is on non-concurrent
collectors for sequential streams

flatMap(this::applyFilters)

~>

collect(tolList())

Non-concurrent & concurrent collectors for parallel streams are covered later

Overview of Non-Concurrent Collectors

stream simply accumulates elements into a
mutable result container

- A non-concurrent collector for a sequential
\/

Overview of Non-Concurrent Collectors

A collector is essentially the inverse
of a spliterator

InputString

f trySplit()
InputString, InputString,
trySplit() trySplit()
InputString, 4 InputString, , InputString, 4 InputString, ,
I I I I
Process Process Process Process
sequentially sequentially sequentially sequentially
f -1

10

Overview of Non-Concurrent Collectors

A collector is essentially the inverse :
InputString

of a spliterator /
trySplit()

A spliterator partitions one input InputString, InputString,
source into a stream of elements

trySplit() trySplit()

InputString 4 InputString; » InputString, 4 InputString, ,

d

11

Overview of Non-Concurrent Collectors

A collector is essentially the inverse
of a spliterator

A collector combines a stream of
elements back into a single result

12

End of Understand
Java Streams Non-
Concurrent Collectors

13

