Evaluate the Pros & Gons of Applying Java

Functional Programming Features

Douglas C. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Appreciate the pros & cons of using
Java features in this example

These “cons” motivate the need for Java function parallelism frameworks

Pros of the
ThreadJoinTest Program

Pros of the ThreadJoinTest Program

. _Foundatlonal Java FP fgatyre_s Worker _,Z _,Z _,g _,Z
improve the program vis-a-vis meacs) ' K
original OO Java version

mWorkerThreads

Main
Thread

Starting ThreadJoinTest

in thread 9 re was found at offset 1 in string xreo

in thread 10 fa was found at offset 1 in string xfao

in thread 12 la was found at offset 1 in string xlao

in thread 13 ti was found at offset 1 in string xtiotio

in thread 11 mi was found at offset 1 in string xmiomio
in thread 11 mi was found at offset 4 in string xmiomio
in thread 13 ti was found at offset 4 in string xtiotio

in thread 14 so was found at offset 1 in string xsoosoo
in thread 14 so was found at offset 4 in string xsoosoo

* Ew& %
wW
*

M

in thread 16 do was found at offset 1 in string xdoodoo
in thread 16 do was found at offset 4 in string xdoodoo
in thread 16 do was found at offset 1 in string xdoodoo
in thread 16 do was found at offset 4 in string xdoodoo
in thread 15 do was found at offset 1 in string xdoo

in thread 15 do was found at offset 1 in string xdoo
Ending ThreadJoinTest

See github.com/douglascraigschmidt/LivelLessons/tree/master/ThreadJoinTest/original

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/original

Pros of the ThreadJoinTest Program

» Foundational Java FP features
improve the program vis-a-vis
original OO Java version, e.g.

 The OO Java version has more
syntax & traditional for loops

for (int 1 = 0;
i < mInput.size(); ++i) {
Thread t = new Thread
(makeTask (1)) ;

mWorkerThreads.add(t) ;
}

Runnable makeTask (int 1) {
return new Runnable () {
public void run() ({
String e = mInput.get (i)
processInput (e) ;

}

Pros of the ThreadJoinTest Program

« Foundational Java FP features for (int i = 0;
improve the program vis-a-vis 1 < mInput.size(); ++1) {
original OO Java version, e.g. Thread t = new Thread
_ (makeTask (1)) ;
« The OO Java version has more
syntax & traditional for loops

mWorkerThreads.add(t) ;
}

Runnable makeTask (int 1) {
return new Runnable () {
public void run() ({
String e = mInput.get (i)
processInput (e) ;

}

Index-based for loops often
suffer from “off-by-one” errors

See en.wikipedia.org/wiki/Off-by-one_error

https://en.wikipedia.org/wiki/Off-by-one_error

Pros of the ThreadJoinTest Program

» Foundational Java FP features
improve the program vis-a-vis
original OO Java version, e.g.

 The OO Java version has more
syntax & traditional for loops

- \ Anonymous
o’ T inner classes are
g—_ | tedious to write..

for (int 1 = 0;
i < mInput.size(); ++i) {
Thread t = new Thread
(makeTask (1)) ;

mWorkerThreads.add(t) ;
}

Runnable makeTask (int i) {
return new Runnable () {
= public void run() ({

String e = mInput.get (i)

processInput (e) ;

}

Pros of the ThreadJoinTest Program

 Foundational Java FP features for (int i = 0;
improve the program vis-a-vis i < mInput.size(); ++1) {
original OO Java version, e.g. Thread t = new Thread

_ (makeTask (1)) ;
 The OO Java version has more
syntax & traditional for loops mWorkerThreads.add (t) ;
- }

Runnable makeTask (int i) ({
return new Runnable() ({
public void run() {
String e = mInput.get(i);
processInput (e) ;

}

The OO Java version is thus more tedious & error-prone to program..

Pros of the ThreadJoinTest Program

« Foundational Java FP features public void run() {
improve the program Vis_é_vis List<Thread> workerThreads =
original OO Java version, e.g. makeWorkerThreads
(this: :processInput) ;
workerThreads

- The FP Java implementation is -forEach (Thread: :start) ;

more concise, extensible, & robust - - - \

List<Thread> makeWorkerThreads e.g., declarative Java features
(Function<String, Void> task) ({ such as forEach(), functional
e 1 Interfaces, method references,
mInputlist.forEach (input -> & lambda expressions

workerThreads.add
(new Thread(() -> task.apply(input))));

9

Pros of the ThreadJoinTest Program

» Foundational Java FP features
improve the program vis-a-vis
original OO Java version, e.g.

« The FP Java implementation is
more concise, extensible, & robust

List<Thread> makeWorkerThreads

(Function<String, Void> task) {

mInputList. forEach (input ->
workerThreads.add

public void run() {

List<Thread> workerThreads
makeWorkerThreads
(this: :processInput) ;

workerThreads
.forEach (Thread: :start) ;

AN

The forEach() method avoids

“off-by-one” fence-post errors

(new Thread(() -> task.apply(input)))):;

10

Pros of the ThreadJoinTest Program

« Foundational Java FP features public void run() ({
Improve the program Vls_é_VIS List<Thread> workerThreads =
original OO Java version, e.g. makeWorkerThreads
(this: :processInput) ;
workerThreads
- The FP Java implementation is -forEach (Threadg : start) ;

more concise, extensible, & robust

List<Thread> makeWorkerThreads

(Function<String, Void> task) {
-—-—-—-—--—-“—-——.

Functional interfaces, method
references, & lambda expressions
simplify behavior parameterization

mInputList. forEach (input ->
workerThreads.add
(new Thread(() -> task.apply(input))));

11

Cons of the
ThreadJoinTest Program

12

Cons of the ThreadJoinTest Program

« There’s still “accidental complexity”
in the Java FP version m—

o

FLOOR
SLIPPERY N
WHEN WET| ™

Accidental complexities arise
from limitations with software
technigues, tools, & methods

See en.wikipedia.org/wiki/No Silver Bullet

https://en.wikipedia.org/wiki/No_Silver_Bullet

Cons of the ThreadJoinTest Program

« There’s still "accidental complexity” public void run() {
in the Java FP version, e.qg. List<Thread> workerThreads =
makeWorkerThreads

e Manually creating, starting, & (this: :processInput) ;

joining threads
workerThreads

You must remember | ____— .forEach(Thread: :start) ;
to start each thread!

workerThreads
.forEach (thread -> {
try { thread.join(); }
catch (Exception e) {
throw new
RuntimeException (e) ;

}})

14

Cons of the ThreadJoinTest Program

« There’s still "accidental complexity” public void run() {
in the Java FP version, e.qg. List<Thread> workerThreads =
makeWorkerThreads

e Manually creating, starting, & (this: :processInput) ;

joining threads

workerThreads
.forEach (Thread: :start) ;

workerThreads
.forEach (thread -> {

try { thread.join(); }
Note the verbosity of handling checked / catch (Exception e) ({

exceptions in modern Java programs.. throw new |
RuntimeException (e) ;

}})

See codingjunkie.net/functional-iterface-exceptions

http://codingjunkie.net/functional-iterface-exceptions

Cons of the ThreadJoinTest Program

« There’s still "accidental complexity” public void run() {
in the Java FP version, e.qg. List<Thread> workerThreads =
makeWorkerThreads

e Manually creating, starting, & (this: :processInput) ;

joining threads

workerThreads
.forEach (Thread: :start) ;

workerThreads
.forEach (rethrowConsumer

//////’(Thread::join));

A helper class enables less verbosely use of checked exceptions in Java FP programs

See stackoverflow.com/a/27644392/3312330

https://stackoverflow.com/a/27644392/3312330

Cons of the ThreadJoinTest Program

« There’s still “"accidental complexity” List<Thread> makeWorkerThreads

in the Java FP version, e.q. (Function<String, Void> task) {
List<Thread> workerThreads =

new ArrayList<>();

* Only one parallelism model mInputList.forEach (input ->
supported workerThreads.add
(new Thread(()

« “thread-per-work” hard-codes the -> task.apply (input)))) ;

of threads to # of input strings

return workerThreads;

17

Cons of the ThreadJoinTest Program

« There’s still “"accidental complexity”

in the Java FP version, e.g.

* Not easily extensible without
major changes to the code

* e.g., insufficiently declarative

<< lava Class==

(& ThreadJoinTest

“f sSHAKESPEARE_DATA_FILE: String
“f sPHRASE_LIST FILE: String

“ minputList: List<String=
SnFmF"hraaesTchlm:I LIS’[{STFIHQ}

GSEarcthEShutThreadJnm

4 SearchOneShotThreadJoin()

a makeWorkerThreads(Function=String, Void=):List<Thread=
@ run()-void

@ processinput(String)-Void

a getTitle(String):String

18

Cons of the ThreadJoinTest Program

in the Java FP version, e.g.

« There’s still “accidental complexity” . ’

The structure of this parallel code is much different than the sequential code

Cons of the ThreadJoinTest Program

 Solving these problems requires more than the foundational Java FP features

Parallel Streams

Attt

fiter(not(this::uriCached)) I

o H

i
1
1
i
1
map(this::downloadlimage) Il
i
1
1
1
1
1
-

L0
1 i

flatMap(this::applyFilters) Il
L0

collect(tolList())

-------------1

©

&
Project

Reactor

ForkJoinPool

' Pool of worker thread®

Completable Futures

EEEEEN---)
V

fiter(not(this::uriCached))

b

map(this::downloadlmageAsync)

7

ﬂatMap_(this::applyFiltersAsync)

Ny

collect{toFuture())

See www.dre.vanderbilt.edu/~schmidt/DigitalLearning |

http://www.dre.vanderbilt.edu/~schmidt/DigitalLearning

Cons of the ThreadJoinTest Program

 Solving these problems requires more than the foundational Java FP features

Parallel Streams

EEEEEE- -] —

RSl IEE

fiter(not(this::uriCached))

I'
v 4

e.g., Java’s FP parallelism
frameworks provide a FP
facade around its the OO
features it’s had for years

Completable Futures

_—— HEEEEE---E]

v

fiter(not(this::uriCached))

map(this::downloadlmage)

flatMap(this::applyFilters) r
.. 3 1

T 1 5§
0

co//ea‘(toL/'sz‘()l)l

/

ForkJoinPool

——

' Pool of worker th

g

map(this::downloadimageAsync)

7

ﬂatMap_(this::applyFiltersAsync)

7

collecl{toFuture())

See en.wikipedia.org/wiki/Facade

pattern

https://en.wikipedia.org/wiki/Facade_pattern

Cons of the ThreadJoinTest Program

 Solving these problems requires more than the foundational Java FP features

Parallel Streams

HEHEEEE---[)

filter(not(this::uriCached))

So b

map(this::downloadlmage)

T § 0

flatMap(this::applyFilters)

s

co//ect(toU’st(}l).

Completable Futures

EEEEEE-)
4

filter(not(this::uriCached))

7

map(this::downloadimageAsync)

7y

ﬂatMa;ﬂhis::applyFiltersAsync)

Ny

collect(toFuture())

The structure of this parallel code is nearly identical to the sequential code

End of Evaluate the Pros

& Cons of Applying Java

Functional Programming
Features

23

