
Evaluate the Pros & Cons of Applying Java

Functional Programming Features

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand how Java functional

programming features are applied
in a simple parallel program

• Know how to start & join Java threads
via functional programming features

• Appreciate the pros & cons of using
Java features in this example

These “cons” motivate the need for Java function parallelism frameworks

3

Pros of the
ThreadJoinTest Program

4

Pros of the ThreadJoinTest Program
• Foundational Java FP features

improve the program vis-à-vis
original OO Java version

See github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/original

Starting ThreadJoinTest
in thread 9 re was found at offset 1 in string xreo
in thread 10 fa was found at offset 1 in string xfao
in thread 12 la was found at offset 1 in string xlao
in thread 13 ti was found at offset 1 in string xtiotio
in thread 11 mi was found at offset 1 in string xmiomio
in thread 11 mi was found at offset 4 in string xmiomio
in thread 13 ti was found at offset 4 in string xtiotio
in thread 14 so was found at offset 1 in string xsoosoo
in thread 14 so was found at offset 4 in string xsoosoo
in thread 16 do was found at offset 1 in string xdoodoo
in thread 16 do was found at offset 4 in string xdoodoo
in thread 16 do was found at offset 1 in string xdoodoo
in thread 16 do was found at offset 4 in string xdoodoo
in thread 15 do was found at offset 1 in string xdoo
in thread 15 do was found at offset 1 in string xdoo
Ending ThreadJoinTest

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ThreadJoinTest/original

5

Pros of the ThreadJoinTest Program
• Foundational Java FP features

improve the program vis-à-vis
original OO Java version, e.g.

• The OO Java version has more
syntax & traditional for loops

for (int i = 0;

i < mInput.size(); ++i) {

Thread t = new Thread

(makeTask(i));

mWorkerThreads.add(t);

}

...

Runnable makeTask(int i) {

return new Runnable() {

public void run() {

String e = mInput.get(i);

processInput(e);

}

...

6

Pros of the ThreadJoinTest Program
• Foundational Java FP features

improve the program vis-à-vis
original OO Java version, e.g.

• The OO Java version has more
syntax & traditional for loops

for (int i = 0;

i < mInput.size(); ++i) {

Thread t = new Thread

(makeTask(i));

mWorkerThreads.add(t);

}

...

Runnable makeTask(int i) {

return new Runnable() {

public void run() {

String e = mInput.get(i);

processInput(e);

}

...

Index-based for loops often
suffer from “off-by-one” errors

See en.wikipedia.org/wiki/Off-by-one_error

https://en.wikipedia.org/wiki/Off-by-one_error

7

Pros of the ThreadJoinTest Program
• Foundational Java FP features

improve the program vis-à-vis
original OO Java version, e.g.

• The OO Java version has more
syntax & traditional for loops

for (int i = 0;

i < mInput.size(); ++i) {

Thread t = new Thread

(makeTask(i));

mWorkerThreads.add(t);

}

...

Runnable makeTask(int i) {

return new Runnable() {

public void run() {

String e = mInput.get(i);

processInput(e);

}

...

Anonymous
inner classes are
tedious to write..

8

Pros of the ThreadJoinTest Program
• Foundational Java FP features

improve the program vis-à-vis
original OO Java version, e.g.

• The OO Java version has more
syntax & traditional for loops

for (int i = 0;

i < mInput.size(); ++i) {

Thread t = new Thread

(makeTask(i));

mWorkerThreads.add(t);

}

...

Runnable makeTask(int i) {

return new Runnable() {

public void run() {

String e = mInput.get(i);

processInput(e);

}

...

The OO Java version is thus more tedious & error-prone to program..

9

Pros of the ThreadJoinTest Program
• Foundational Java FP features

improve the program vis-à-vis
original OO Java version, e.g.

• The OO Java version has more
syntax & traditional for loops

• The FP Java implementation is
more concise, extensible, & robust

public void run() {

List<Thread> workerThreads =

makeWorkerThreads

(this::processInput);

workerThreads

.forEach(Thread::start);

...

List<Thread> makeWorkerThreads

(Function<String, Void> task) {

...

mInputList.forEach(input ->

workerThreads.add

(new Thread(() -> task.apply(input))));

e.g., declarative Java features
such as forEach(), functional

interfaces, method references,
& lambda expressions

10

Pros of the ThreadJoinTest Program
• Foundational Java FP features

improve the program vis-à-vis
original OO Java version, e.g.

• The OO Java version has more
syntax & traditional for loops

• The FP Java implementation is
more concise, extensible, & robust

public void run() {

List<Thread> workerThreads =

makeWorkerThreads

(this::processInput);

workerThreads

.forEach(Thread::start);

...

List<Thread> makeWorkerThreads

(Function<String, Void> task) {

...

mInputList.forEach(input ->

workerThreads.add

(new Thread(() -> task.apply(input))));

The forEach() method avoids
“off-by-one” fence-post errors

11

Pros of the ThreadJoinTest Program
• Foundational Java FP features

improve the program vis-à-vis
original OO Java version, e.g.

• The OO Java version has more
syntax & traditional for loops

• The FP Java implementation is
more concise, extensible, & robust

public void run() {

List<Thread> workerThreads =

makeWorkerThreads

(this::processInput);

workerThreads

.forEach(Thread::start);

...

List<Thread> makeWorkerThreads

(Function<String, Void> task) {

...

mInputList.forEach(input ->

workerThreads.add

(new Thread(() -> task.apply(input))));

Functional interfaces, method
references, & lambda expressions
simplify behavior parameterization

12

Cons of the
ThreadJoinTest Program

13

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java FP version

See en.wikipedia.org/wiki/No_Silver_Bullet

Accidental complexities arise
from limitations with software
techniques, tools, & methods

https://en.wikipedia.org/wiki/No_Silver_Bullet

14

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java FP version, e.g.

• Manually creating, starting, &
joining threads

public void run() {

List<Thread> workerThreads =

makeWorkerThreads

(this::processInput);

workerThreads

.forEach(Thread::start);

workerThreads

.forEach(thread -> {

try { thread.join(); }

catch(Exception e) {

throw new

RuntimeException(e);

}}); ...

You must remember
to start each thread!

15

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java FP version, e.g.

• Manually creating, starting, &
joining threads

public void run() {

List<Thread> workerThreads =

makeWorkerThreads

(this::processInput);

workerThreads

.forEach(Thread::start);

workerThreads

.forEach(thread -> {

try { thread.join(); }

catch(Exception e) {

throw new

RuntimeException(e);

}}); ...

Note the verbosity of handling checked
exceptions in modern Java programs..

See codingjunkie.net/functional-iterface-exceptions

http://codingjunkie.net/functional-iterface-exceptions

16

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java FP version, e.g.

• Manually creating, starting, &
joining threads

public void run() {

List<Thread> workerThreads =

makeWorkerThreads

(this::processInput);

workerThreads

.forEach(Thread::start);

workerThreads

.forEach(rethrowConsumer

(Thread::join));

A helper class enables less verbosely use of checked exceptions in Java FP programs

See stackoverflow.com/a/27644392/3312330

https://stackoverflow.com/a/27644392/3312330

17

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java FP version, e.g.

• Manually creating, starting, &
joining threads

• Only one parallelism model
supported

• “thread-per-work” hard-codes the
of threads to # of input strings

List<Thread> makeWorkerThreads

(Function<String, Void> task){

List<Thread> workerThreads =

new ArrayList<>();

mInputList.forEach(input ->

workerThreads.add

(new Thread(()

-> task.apply(input))));

return workerThreads;

}

18

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java FP version, e.g.

• Manually creating, starting, &
joining threads

• Only one parallelism model
supported

• Not easily extensible without
major changes to the code

• e.g., insufficiently declarative

19

Cons of the ThreadJoinTest Program
• There’s still “accidental complexity”

in the Java FP version, e.g.

• Manually creating, starting, &
joining threads

• Only one parallelism model
supported

• Not easily extensible without
major changes to the code

The structure of this parallel code is much different than the sequential code

20

Cons of the ThreadJoinTest Program
• Solving these problems requires more than the foundational Java FP features

See www.dre.vanderbilt.edu/~schmidt/DigitalLearning

http://www.dre.vanderbilt.edu/~schmidt/DigitalLearning

21

Cons of the ThreadJoinTest Program
• Solving these problems requires more than the foundational Java FP features

See en.wikipedia.org/wiki/Facade_pattern

e.g., Java’s FP parallelism
frameworks provide a FP
façade around its the OO
features it’s had for years

https://en.wikipedia.org/wiki/Facade_pattern

22The structure of this parallel code is nearly identical to the sequential code

Cons of the ThreadJoinTest Program
• Solving these problems requires more than the foundational Java FP features

23

End of Evaluate the Pros
& Cons of Applying Java
Functional Programming

Features

