Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Understand foundational functional programming features in Java 8, e.q.,

Functional
l Interfaces

 Key functional interfaces

BiFunction

7

Supplier

Learning Objectives in this Part of the Lesson

« Lambda expressions
« Method & constructor references
 Key functional interfaces

These features form the basis for Java streams & concurrency/parallelism frameworks

Overview of
Functional Interfaces

Overview of Functional Interfaces

* A functional interfaceis an interface that contains only one abstract method

<<Java Interface>>

¢ Runnable

@ run():void

<<Java Interface>>
é# Callable<V>

@ call()

See www.oreilly.com/learning/java-8-functional-interfaces

http://www.oreilly.com/learning/java-8-functional-interfaces

Overview of Functional Interfaces

« A functional interface is the type used for a parameter when a lambda
expression or method reference is passed as an argument to a method

<T> void runTest (Function<T, T> fact, T n) {
long startTime = System.nanoTime () ;
T result = fact.apply(n)
long stopTime = (System.nanoTime() - startTime) / 1 000 000;

}

runTest (ParallelStreamFactorial: :factorial, n);
runTest (SequentialStreamFactorial: : factorial, n);

See www.baeldung.com/java-8-functional-interfaces

http://www.baeldung.com/java-8-functional-interfaces

Overview of Functional Interfaces

« A functional interface is the type used for a parameter when a lambda
expression or method reference is passed as an argument to a method

<T> void runTest (Function<T, T> fact, T
long startTime = System.nanoTime () ;
T result = fact.apply(n)
long stopTime = (System.nanoTime() - startTime) / 1 000 000;

Record & print time taken
to compute 'n’ factorial

}

runTest (ParallelStreamFactorial: :factorial, n);
runTest (SequentialStreamFactorial: : factorial, n);

See github.com/douglascraigschmidt/Livel essons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Overview of Functional Interfaces

« A functional interface is the type used for a parameter when a lambda
expression or method reference is passed as an argument to a method

<T> void runTest (Function<T, T> fact, T n)

fact’ parameterizes the
long startTime = System.nanoTime();HH““‘“ P

factorial implementation

T result = fact.apply(n); ——
long stopTime = (System.nanoTime() - startTime) / 1 000 000;

}

runTest (ParallelStreamFactorial: :factorial, n);
runTest (SequentialStreamFactorial: : factorial, n);

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html |

http://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

Overview of Functional Interfaces

« A functional interface is the type used for a parameter when a lambda
expression or method reference is passed as an argument to a method

<T> void runTest (Function<T, T> fact, T n) {
long startTime = System.nanoTime () ;
T result = fact.apply(n)
long stopTime = (System.nanoTime() - startTime) / 1 000 000;

}

runTest (ParallelStreamFactorial: :factorial, n);
runTest (SequentialStreamFactorial: : factorial, n);

yd

Different factorial implementations can be passed as
method reference params to the runiest() method

This is an example of behavior parameterization

Overview of Functional Interfaces

« A functional interface is the type used for a parameter when a lambda
expression or method reference is passed as an argument to a method

<T> void runTest (Function<T, T> fact, T n) {
long startTime = System.nanoTime () ;
T result = fact.apply(n)
long stopTime = (System.nanoTime() - startTime) / 1 000 000;

}

runTest (ParallelStreamFactorial: :factorial, n);

e

static BigInteger factorial (BigInteger n) {
return LongStream.rangeClosed(1l, n)
.parallel ()
.mapToObj (BigInteger: :valueOf)
.reduce (BigInteger.ONE, BigInteger::multiply)

Summary of Common
Functional Interfaces

11

Summary of Common Functional Interfaces

 Java defines many types
of functional interfaces

Package java.util.function

Functional interfaces provide target types for lambda expressions and method references.

See: Description

Interface

BiConsumer<T,U>
BiFunction<T,U,R>

BinaryOperator<T>

BiPredicate<T,U>
BooleanSupplier
Consumer<T>
DoubleBinaryOperator
DoubleConsumer
DoubleFunction<R>
DoublePredicate
DoubleSupplier
DoubleTointFunction
DoubleToLongFunction
DoubleUnaryOperator

Function<T,R>

Description

Represents an operation that accepts two input arguments and returns no result.
Represents a function that accepts two arguments and produces a result.

Represents an operation upon two operands of the same type, producing a result of the same type
as the operands.

Represents a predicate (boolean-valued function) of two arguments.

Represents a supplier of boolean-valued results.

Represents an operation that accepts a single input argument and returns no result.

Represents an operation upon two double-valued operands and producing a double-valued result.
Represents an operation that accepts a single double-valued argument and returns no result.
Represents a function that accepts a double-valued argument and produces a result.

Represents a predicate (boolean-valued function) of one double-valued argument.

Represents a supplier of double-valued results.

Represents a function that accepts a double-valued argument and produces an int-valued result.
Represents a function that accepts a double-valued argument and produces a long-valued result.
Represents an operation on a single double-valued operand that produces a double-valued result.

Represents a function that accepts one argument and produces a result.

See docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.htmil

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

Summary of Common Functional Interfaces

 Java defines many types
of functional interfaces

« Some of these interfaces
handle reference types

Package java.util.function

Functional interfaces provide target types for lambda expressions and method references.

See: Description

Interface Summary
Interface

BiConsumer<T,U>
BiFunction<T,U,R>

BinaryOperator<T>

BiPredicate<T,U>
BooleanSupplier
Consumer<T>
DoubleBinaryOperator
DoubleConsumer
DoubleFunction<R>
DoublePredicate
DoubleSupplier
DoubleTointFunction
DoubleToLongFunction
DoubleUnaryOperator

Function<T,R>

Description
Represents an operation that accepts two input arguments and returns no result.
Represents a function that accepts two arguments and produces a result.

Represents an operation upon two operands of the same type, producing a result of the same type
as the operands.

Represents a predicate (boolean-valued function) of two arguments.

Represents a supplier of boolean-valued results.

Represents an operation that accepts a single input argument and returns no result.

Represents an operation upon two double-valued operands and producing a double-valued result.
Represents an operation that accepts a single double-valued argument and returns no result.
Represents a function that accepts a double-valued argument and produces a result.

Represents a predicate (boolean-valued function) of one double-valued argument.

Represents a supplier of double-valued results.

Represents a function that accepts a double-valued argument and produces an int-valued result.
Represents a function that accepts a double-valued argument and produces a long-valued result.
Represents an operation on a single double-valued operand that produces a double-valued result.

Represents a function that accepts one argument and produces a result.

See www.oreilly.com/library/view/java-8-pocket/9781491901083/ch04.html

http://www.oreilly.com/library/view/java-8-pocket/9781491901083/ch04.html

ummary of Common Functional Interfaces

Package java.util.function

Functional interfaces provide target types for lambda expressions and method references.

 Java defines many types
of functional interfaces

See: Description

Interface Summary
Interface Description
IntConsumer Represents an operation that accepts a single int-valued argument and returns no result.
IntFunction<R> Represents a function that accepts an int-valued argument and produces a result.
.
L] Other I nte rfa Ces Su ppo rt IntPredicate Represents a predicate (boolean-valued function) of one int-valued argument.
IntSupplier Represents a supplier of int-valued results.

primitive types

IntToDoubleFunction

Represents a function that accepts an int-valued argument and produces a double-valued result,

IntToLongFunction Represents a function that accepts an int-valued argument and produces a long-valued result.
IntUnaryOperator Represents an operation on a single int-valued operand that produces an int-valued result.
LongBinaryOperator Represents an operation upon two long-valued operands and producing a long-valued result.
LongConsumer Represents an operation that accepts a single long-valued argument and returns no result.
LongFunction<R> Represents a function that accepts a long-valued argument and produces a result.
LongPredicate Represents a predicate (boolean-valued function) of one long-valued argument

LongSupplier Represents a supplier of long-valued results.

LongToDoubleFunction Represents a function that accepts a long-valued argument and produces a double-valued result.

LongTolntFunction Represents a function that accepts a long-valued argument and produces an int-valued result,

LongUnaryOperator Represents an operation on a single long-valued operand that produces a long-valued result.

ObjDoubleConsumer<T> Represents an operation that accepts an object-valued and a double-valued argument, and returns no result,

ObjintConsumer<T>

Represents an operation that accepts an object-valued and a int-valued argument, and returns no result.

See docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

ummary of Common Functional Interfaces

 Java defines many types
of functional interfaces

« Other interfaces support
primitive types

 Avoids “auto-boxing”
overhead

See: Description

Interface Summary

Interface

IntConsumer
IntFunction<R>
IntPredicate
IntSupplier
IntToDoubleFunction
IntToLongFunction
IntUnaryOperator
LongBinaryOperator
LongConsumer
LongFunction<R>
LongPredicate
LongSupplier
LongToDoubleFunction
LongTolIntFunction

LongUnaryOperator

ObjDoubleConsumer<T>

ObjintConsumer<T>

Package java.util.function

Functional interfaces provide target types for lambda expressions and method references.

Description
Represents an operation that accepts a single int-valued argument and returns no result.
Represents a function that accepts an int-valued argument and produces a result.
Represents a predicate (boolean-valued function) of one int-valued argument.
Represents a supplier of int-valued results.
Represents a function that accepts an int-valued argument and produces a double-valued result,
Represents a function that accepts an int-valued argument and produces a long-valued result.
Represents an operation on a single int-valued operand that produces an int-valued result.
Represents an operation upon two long-valued operands and producing a long-valued result.
Represents an operation that accepts a single long-valued argument and returns no result.
Represents a function that accepts a long-valued argument and produces a result.
Represents a predicate (boolean-valued function) of one long-valued argument.
Represents a supplier of long-valued results.
Represents a function that accepts a long-valued argument and produces a double-valued result.
Represents a function that accepts a long-valued argument and produces an int-valued result,
Represents an operation on a single long-valued operand that produces a long-valued result.
Represents an operation that accepts an object-valued and a double-valued argument, and returns no result,

Represents an operation that accepts an object-valued and a int-valued argument, and returns no result.

See rules.sonarsource.com/java/tag/performance/RSPEC-4276

https://rules.sonarsource.com/java/tag/performance/RSPEC-4276

Summary of Common Functional Interfaces

° Java deflnes many types Package java.util.function

Functional interfaces provide target types for lambda expres!
‘ :

of functional interfaces sl ', S

Y

N

~.

Interface 5.
IntConsumer - s < 3 : "% 3 -y v o @S no result.
- ' . ’ 6,1 -
IntFunction <R >we SN lt -
- ey

IntPredicate "

- -
IntSuppliers = * h A -

i B -, A . ’ o . : - -
IntToDoubleFunction = . ; _ ; B R = ¢ ed result,

IntTotongFunctic -

* There's an explosion of | wswewe o B - SR

- W

Java functional interfaces! | =" B 3 e U
< . L
- LongConsumer = % - - 9 - :~_. : % - sl -
. ; y o~
LongFunction<R> . "
" » -
LongPredicate et
LongSupplier : - N
LongToDoubleFdnction) Q double-valued result.
’
LongToIntFunction + REpr ol : 51 TS am int-valued result.
¢ > S,
1 4 4
LongUnaryOperator / #Rebresents an 0}#}'3“, £es a Llong-valued result.
ObjDoubleConsumer<T> g7 Represents an bperation that a. W8 X [ple-valued argument, and returns no result,
’ ¥ v
" v
ObjintConsumer<T> Represgnts an operation that accepts an object-valued and a int-valued argument, and returns no result.

See dzone.com/articles/whats-wrong-java-8-part-ii

https://dzone.com/articles/whats-wrong-java-8-part-ii

ummary of Common Functional Interfaces

° Java deflnes many types Package java.util.function

Functional interfaces provide target types for lambda expressions and method references.

of functional interfaces

Interface Summary

Interface Description

IntConsumer Represents an operation that accepts a single int-valued argument and returns no result.
IntFunction<R> Represents a function that accepts an int-valued argument and produces a result.
IntPredicate Represents a predicate (boolean-valued function) of one int-valued argument.
IntSupplier Represents a supplier of int-valued results

IntToDoubleFunction Represents a function that accepts an int-valued argument and produces a double-valued result,

IntToLongFunction Represents a function that accepts an int-valued argument and produces a long-valued result.

’ -
« There's an explosion of
IntUnaryOperator Represents an operation on a single int-valued operand that produces an int-valued result.
Java fu nctiona I interfacesl LongBinaryOperator Represents an operation upon two long-valued operands and producing a long-valued result.
.
LongConsumer Represents an operation that accepts a single long-valued argument and returns no result,
« However, learn these
’ a predicate (boolean-valued function) of one long-valued argument
. .
interfaces before try| ng | st Represants a suppiler of Long-valued resilts
LongToDoubleFunction Represents a function that accepts a long-valued argument and produces a double-valued result.

-
to Cu StOI I lIZe you r OWn LongTolntFunction Represents a function that accepts a long-valued argument and produces an int-valued result,

LongUnaryOperator

LongFunction<R> Represents a function that accepts a long-valued argument and produces a result,

LongPredicate Represents

Represents an operation on a single long-valued operand that produces a long-valued result.

ObjDoubleConsumer<T> Represents an operation that accepts an object-valued and a double-valued argument, and returns no result,

ObjintConsumer<T> Represents an operation that accepts an object-valued and a int-valued argument, and returns no result.

See tutorials.jenkov.com/java-functional-programming/functional-interfaces.html

http://tutorials.jenkov.com/java-functional-programming/functional-interfaces.html

Summary of Common Functional Interfaces

« Java defines many types
of functional interfaces.

Predicate

BiFunction

Functional |
| Interfaces

We focus on the most common y
types of functional interfaces

Supplier

18

Summary of Common Functional Interfaces

« Java defines many types
of functional interfaces.

Predicate

BiFunction

Functional |
Interfaces

) =

Supplier

All usages of functional interfaces in the upcoming examples are “stateless”!

End of Understand Java
Functional Interfaces:
Overview

20

