
Understand Java Streams

Aggregate Operations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality of stream aggregate operations

Intermediate operation (Behavior f)

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior g)

Terminal operation (Behavior h)



3

Overview of Stream 
Aggregate Operations 



4

Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• An aggregate operation is a higher-order 

function that applies a “behavior” on 
elements in a stream

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

See en.wikipedia.org/wiki/Higher-order_function

Output h(g(f(x)))

A “higher order function” is a function 
that is passed a function as a param

…

https://en.wikipedia.org/wiki/Higher-order_function


5

Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• An aggregate operation is a higher-order 

function that applies a “behavior” on 
elements in a stream

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

The behavior can be a lambda or 
method reference to a function, 

predicate, consumer, supplier, etc.

Output h(g(f(x)))

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

…

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764


6

Input x

Output f(x)

Output g(f(x))

Overview of Stream Aggregate Operations
• Aggregate operations form a declarative

pipeline that emphasizes the “what” &
deemphasizes the “how”

Aggregate operation (Behavior f)

Aggregate operation (Behavior g)

Aggregate operation (Behavior h)

See blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8

What

How

Output h(g(f(x)))

…

https://blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8


7

Overview of Stream Aggregate Operations

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

• There are two types of aggregate operations
…



8

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• e.g., filter(), map(), flatMap(), 
takeWhile(), dropWhile(), etc.

Overview of Stream Aggregate Operations

See geekylearner.com/java-stream-intermediate-operations-learn-by-examples

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

…

https://geekylearner.com/java-stream-intermediate-operations-learn-by-examples/


9

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• e.g., filter(), map(), flatMap(), 
takeWhile(), dropWhile(), etc.

Overview of Stream Aggregate Operations

Input x

…

long HamletCharacters = Stream

.of("horatio", "laertes", 

"Hamlet", ...)

.count();

Terminal operation (Behavior h)

Intermediate operations are optional.



10

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• e.g., filter(), map(), flatMap(), 
takeWhile(), dropWhile(), etc.

Overview of Stream Aggregate Operations

Input x

…

long HamletCharacters = Stream

.of("horatio", "laertes", 

"Hamlet", ...)

.peek(System.out::print)

.count();

Terminal operation (Behavior h)

See mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count

The semantics of count() are now weird..

https://mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count/


11

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• e.g., filter(), map(), flatMap(), 
takeWhile(), dropWhile(), etc.

Overview of Stream Aggregate Operations

Input x

…

long HamletCharacters = Stream

.of("horatio", "laertes", 

"Hamlet", ...)

.count();

Terminal operation (Behavior h)

Newer versions of Java optimize streams containing no intermediate operations



12

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• Intermediate operations can be further
classified via several dimensions

Overview of Stream Aggregate Operations

Run-to-
completion

Shorct-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A



13

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• Intermediate operations can be further
classified via several dimensions, e.g.

• Stateful

• Store info from a prior 
invocation for use in a 
future invocation

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations

https://stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations/


14

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• Intermediate operations can be further
classified via several dimensions, e.g.

• Stateful

• Stateless

• Do not store info from any prior
invocations

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See javapapers.com/java/java-stream-api

https://javapapers.com/java/java-stream-api/


15

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• Intermediate operations can be further
classified via several dimensions, e.g.

• Stateful

• Stateless

• Do not store info from any prior
invocations

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See automationrhapsody.com/java-8-features-stream-api-explained

Stateless operations often require significantly fewer 
processing & memory resources than stateful operations!

https://automationrhapsody.com/java-8-features-stream-api-explained/


16

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• Intermediate operations can be further
classified via several dimensions, e.g.

• Stateful

• Stateless

• Run-to-completion

• Process all elements 
in the input stream

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See en.wikipedia.org/wiki/Run_to_completion_scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling


17

• There are two types of aggregate operations

• Intermediate operations 

• Process elements in their input stream 
& yield an output stream

• Intermediate operations can be further
classified via several dimensions, e.g.

• Stateful

• Stateless

• Run-to-completion

• Short-circuiting

• Make stream operate 
on a reduced size

Overview of Stream Aggregate Operations

Run-to-
completion

Short-
Circuiting

Stateful distinct(), 
skip(), 
sorted()

limit(), 
takeWhile(), 
dropWhile(), 
etc.

Stateless filter(), 
map(), 
flatMap(), 
etc.

N/A

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html


18

• There are two types of aggregate operations

• Intermediate operations 

• Terminal operations

• Trigger intermediate operations &
produce a non-stream result

• e.g., forEach(), reduce(), collect(), 
findAny(), etc.

Overview of Stream Aggregate Operations

See www.leveluplunch.com/java/examples/stream-terminal-operations-example

Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

A stream must have one (& 
only one) terminal operation

http://www.leveluplunch.com/java/examples/stream-terminal-operations-example


19

• There are two types of aggregate operations

• Intermediate operations 

• Terminal operations

• Trigger intermediate operations &
produce a non-stream result

• Terminal operations can also be
classified via several dimensions

Overview of Stream Aggregate Operations

Operation Type Examples

Run-to-
completion

reduce(), collect(), 
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(), 
findFirst(), 
noneMatch()



20

• There are two types of aggregate operations

• Intermediate operations 

• Terminal operations

• Trigger intermediate operations &
produce a non-stream result

• Terminal operations can also be
classified via several dimensions, e.g.

• Run-to-completion

• Terminate only after processing
all elements in the stream

Overview of Stream Aggregate Operations

Operation Type Examples

Run-to-
completion

reduce(), collect(), 
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(), 
findFirst(), 
noneMatch()



21

• There are two types of aggregate operations

• Intermediate operations 

• Terminal operations

• Trigger intermediate operations &
produce a non-stream result

• Terminal operations can also be
classified via several dimensions, e.g.

• Run-to-completion

• Short-circuiting

• May cause a stream to terminate before 
processing all values

Overview of Stream Aggregate Operations

Operation Type Examples

Run-to-
completion

reduce(), collect(), 
forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(), 
findFirst(), 
noneMatch()



22

End of Understand Java 
Streams Aggregate 

Operations


