Douglas C. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality of stream aggregate operations

l ! Input X

Intermediate operation (Behavior f)

l | Output f(x)

Intermediate operation (Behavior g)

! | Output g(f(x))

Terminal operation (Behavior h)

Overview of Stream
Aggregate Operations

Overview of Stream Aggregate Operations

« An aggregate operation is a higher-order
function that applies a “behavior” on HELONEE.. DeECe -

elements in a stream @ Input x

Aggregate operation (Behavior f)

@ Output f(x)

Aggregate operation (Behavior g)

@ Output g(f(x))

Aggregate operation (Behavior h)

A “higher order function”is a function
that /s passed a function as a param Output h(g(f(x)))

See en.wiki 3edia.org/wiki/Higher-order function

https://en.wikipedia.org/wiki/Higher-order_function

Overview of Stream Aggregate Operations

« An aggregate operation is a higher-order
function that applies a “behavior” on HELONEE.. DeECe -

elements in a stream @ Input x

Aggregate operation (Behavior f)

@ Output f(x)

Aggregate O@ggn_(Behavior 0)

The behavior can be a lambda or T
method reference to a function, | | Output g(f(x))
predicate, consumer, supplier, etc.

Aggregate operation (Behavior h)

Output h(g(f(x)))

See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

Overview of Stream Aggregate Operations

» Aggregate operations form a declarative
pipeline that emphasizes the “what” & L
4} Input X

—— -

deemphasizes the “how”
Aggregate operation (Behavior f)

@ Output f(x)

Aggregate operation (Behavior g)

@ Output g(f(x))

Aggregate operation (Behavior h)

Output h(g(f(x)))

See blog.joog.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8

https://blog.jooq.org/2015/09/17/comparing-imperative-and-functional-algorithms-in-java-8

Overview of Stream Aggregate Operations

« There are two types of aggregate operations

@ Input x

Intermediate operation (Behavior f)

@ Output f(x)

Intermediate operation (Behavior g)

@ Output g(f(x)

Terminal operation (Behavior h)

Overview of Stream Aggregate Operations

 There are two types of aggregate operations
types of aggregate op EEOEEE. NSO

« Intermediate operations
* Process elements in their input stream @ Input x

& yield an output stream Intermediate operation (Behavior f)
« e.g,, filter(), map(), flatMap(),
takeWhile(), dropWhile(), etc. @ Output f(x)

Intermediate operation (Behavior g)

@ Output g(f(x))

Terminal operation (Behavior h)

See geekylearner.com/java-stream-intermediate-operations-learn-by-examples

https://geekylearner.com/java-stream-intermediate-operations-learn-by-examples/

Overview of Stream Aggregate Operations

« There are two types of aggregate operations

« Intermediate operations

* Process elements in their input stream

& yield an output stream

« e.g,, filter(), map(), flatMap(),
takeWhile(), dropWhile(), etc.

////

Intermediate operations are optional.

N

' long HamletCharacters = Stream
.0f ("horatio", "laertes",
"Hamlet", ...)
.count () ;

=

GO

I ..

Input X

Terminal operation (Behavior h)

Overview of Stream Aggregate Operations

 There are two types of aggregate operations
types of aggregate op EEOEEE. NSO

« Intermediate operations
Input X

* Process elements in their input stream
& yield an output stream

. e.g., filter(), map(), flatMap(), “_
takeWhile(), dropWhile(), etc. “?‘“/“'é

The semantics of count() are now weird..
/

long HamletCharadters = Stream ka)7
.0of ("horatio",/ "laertes",

"Hamlet", /...) Terminal operation (Behavior h)
.peek (System.out: :print)

.count () ;

See mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count

https://mkyong.com/java8/java-8-stream-the-peek-is-not-working-with-count/

Overview of Stream Aggregate Operations
* There are tw_o types of ag_|gregate operations EEOEEE OEEOEE
« Intermediate operations
Input X

* Process elements in their input stream
& yield an output stream

« e.g,, filter(), map(), flatMap(), “?-“’Q\‘\p«\—

takeWhile(), dropWhile(), etc.

long HamletCharacters = Stream ka)7 \ L
-of ("horatio”, "laertes", Terminal operation (Behavior h)
"Hamlet" , .)
.count () ;

Newer versions of Java optimize streams containing no intermediate operations

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to- Shorct-
completion | Circuiting

Stateful distinct(), limit(),

. Intermediate operations can be further Ski'ﬁg()& Eakeugi.lle()'
classified via several dimensions sorted() ropWhile(),

etc.
Stateless filter(), N/A
map(),
flatMap(),
etc.

12

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to- Short-
completion | Circuiting

Stateful distinct(), limit(),

. Intermediate operations can be further Skilz()é Elakevv\\//r;i_lle(),
classified via several dimensions, e.g. SOl e{gp le(),
* Stateful » % » Stateless filter(), N/A
« Store info from a prior < map(),
invocation for use in a 1 flatMap(),
future invocation etc.
PN

HISTORY

See stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations

https://stuartmarks.wordpress.com/2015/01/09/writing-stateful-stream-operations/

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to- Short-
completion | Circuiting

Stateful distinct(), limit(),

. Intermediate operations can be further Ski'ﬁg()& Eakeugi.lle()'
classified via several dimensions, e.g. sorted() ropWhile(),

etc.
Stateless filter(), N/A
- Stateless map(),
- Do not store info from any prior fI?tMap(),
invocations ete.

See javapapers.com/java/java-stream-api

https://javapapers.com/java/java-stream-api/

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to- Short-
completion | Circuiting

Stateful distinct(), limit(),
skip(), takeWhile(),
sorted() dropWhile(),

 Intermediate operations can be further
classified via several dimensions, e.g.

etc.
Stateless filter(), N/A
- Stateless map(),
» Do not store info from any prior flatMap(),
invocations etc.

Stateless operations often require significantly fewer
processing & memory resources than stateful operations!

See automationrhapsody.com/java-8-features-stream-api-explained

https://automationrhapsody.com/java-8-features-stream-api-explained/

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

« Intermediate operations Short-
Circuiting

Stateful distinct(), limit(),
skip(), takeWhile(),
sorted() dropWhile(),

 Intermediate operations can be further
classified via several dimensions, e.g.

etc.
Stateless filter(), N/A
map(),
« Run-to-completion Q?CtMap(),

e Process all elements
in the input stream

See en.wikipedia.org/wiki/Run to completion scheduling

https://en.wikipedia.org/wiki/Run_to_completion_scheduling

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

- Intermediate operations Run-to-
completion

Stateful distinct(), limit(),
skip(), takeWhile(),
sorted() dropWhile(),

 Intermediate operations can be further
classified via several dimensions, e.g.

etc.
Stateless filter(), N/A
map(),
Lr r':_T| Mz ~ flatMap(),
| - 13 - etc.
« Short-circuiting ;|_|_

—
« Make stream operate r"_-_,—jr
on a reduced size

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/short-circuiting.html

Overview of Stream Aggregate Operations

 There are two es of aggreqgate operations
types of aggregate op EEOEEE OEELOEE

- Terminal operations @ Input x
 Trigger intermediate operations & Intermediate operation (Behavior f)
produce a non-stream result
. e.g., forEach(), reduce(), collect(), @ Output f(x)

findAny(), etc.

Intermediate operation (Behavior g)

A stream must have one (&
only one) terminal operation @ Output g(f(x))

\ Terminal operation (Behavior h)

See www.leveluplunch.com/java/examples/stream-terminal-operations-example

http://www.leveluplunch.com/java/examples/stream-terminal-operations-example

Overview of Stream Aggregate Operations

« There are two types of aggregate operations

Operation Type

* Terminal operations Run-to- reduce(), collect(),
completion forEach(), etc.

Short-circuiting allMatch(),

. . | anyMatChOI
Terminal operations can also be findAny(),

classified via several dimensions findFirst(),
noneMatch()

19

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

Operation Type

- Terminal operations Run-to- reduce(), collect(),
completion forEach(), etc.
Short-circuiting allMatch(),
- Terminal operations can also be E%Xﬁ%‘o’
classified via several dimensions, e.g. findFirzt()’
« Run-to-completion noneMatch()

» Terminate only after processing
all elements in the stream

20

Overview of Stream Aggregate Operations
« There are two types of aggregate operations

Operation Type

* Terminal operations Run-to- reduce(), collect(),
completion forEach(), etc.

Short-circuiting allMatch(),
anyMatch(),
findAny(),
findFirst(),
noneMatch()

» Terminal operations can also be
classified via several dimensions, e.g.

« Short-circuiting

« May cause a stream to terminate before
processing all values

e,

21

End of Understand Java
Streams Aggregate
Operations

22

