
Recognize Common Java 

Streams Factory Methods

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Recognize common factory methods used to create streams

Learning Objectives in this Part of the Lesson



3

Common Factory Methods 
for Creating Streams 



4See docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

Common Factory Methods for Creating Streams
• There are several common ways to obtain a stream

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html


5

• There are several common ways to obtain a stream, e.g.

• From a Java collection

or

Common Factory Methods for Creating Streams

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

List<SearchResults> results = 

wordsToFind.parallelStream()

...



6

• There are several common ways to obtain a stream, e.g.

• From a Java collection

Common Factory Methods for Creating Streams

List<SearchResults> results = 

wordsToFind.parallelStream()

...

or

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams


7See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleSearchStream

• There are several common ways to obtain a stream, e.g.

• From a Java collection

Common Factory Methods for Creating Streams

List<SearchResults> results = 

wordsToFind.parallelStream()

...

or

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

We use this approach in the 
SimpleSearchStream program

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleSearchStream


8

• There are several common ways to obtain a stream, e.g.

• From a Java collection

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Common Factory Methods for Creating Streams

or

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

List<SearchResults> results = 

wordsToFind.parallelStream()

...

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html


9

• There are several common ways to obtain a stream, e.g.

• From a Java collection

See docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel

Common Factory Methods for Creating Streams

A call to parallel() can appear 
anywhere in a stream & will have 
same effect as parallelStream()

or

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

List<SearchResults> results = 

wordsToFind.stream()

...

.parallel()

https://docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel--


10

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array
String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Arrays.stream(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println); 

Common Factory Methods for Creating Streams



11

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Arrays.stream(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println); 

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array

Create stream containing 
all elements in an array

Common Factory Methods for Creating Streams

See docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-T:A-


12

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Arrays.stream(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println); 

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array

Print all elements 
in the stream

Common Factory Methods for Creating Streams



13

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Stream.of(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println);

Common Factory Methods for Creating Streams



14

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Stream.of(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println);

Common Factory Methods for Creating Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of

Create stream containing 
all elements in an array

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T-


15

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Stream.of(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println);

Common Factory Methods for Creating Streams

Print all elements 
in the stream



16

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Common Factory Methods for Creating Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#iterate

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#iterate-T-java.util.function.UnaryOperator-


17

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE,

BigInteger.ONE},

f -> new BigInteger[]{f[1],

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Generate & print the first 100 Fibonacci #’s

Common Factory Methods for Creating Streams



18

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE,

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Create the “seed,” which defines 
the initial element in the stream

Common Factory Methods for Creating Streams



19

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1],

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

A lambda function applied 
to the previous element to 

produce a new element

Common Factory Methods for Creating Streams



20

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Convert the array to its first element

Common Factory Methods for Creating Streams



21

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Common Factory Methods for Creating Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#limit

Short-circuit operation limits 
the stream to 100 elements

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#limit-long-


22

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);
Print the first 100 

Fibonacci #’s

Common Factory Methods for Creating Streams



23

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.parallel()

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Common Factory Methods for Creating Streams

Avoid using iterate() in a parallel stream! 



24

End of Recognize Common 
Java Streams Factory Methods


