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• Recognize common factory methods used to create streams

Learning Objectives in this Part of the Lesson
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Common Factory Methods 
for Creating Streams 



4See docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

Common Factory Methods for Creating Streams
• There are several common ways to obtain a stream

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

or

Common Factory Methods for Creating Streams

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

List<SearchResults> results = 

wordsToFind.parallelStream()

...
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

Common Factory Methods for Creating Streams

List<SearchResults> results = 

wordsToFind.parallelStream()

...

or

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams


7See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleSearchStream

• There are several common ways to obtain a stream, e.g.

• From a Java collection

Common Factory Methods for Creating Streams

List<SearchResults> results = 

wordsToFind.parallelStream()

...

or

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

We use this approach in the 
SimpleSearchStream program

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleSearchStream
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Common Factory Methods for Creating Streams

or

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

List<SearchResults> results = 

wordsToFind.parallelStream()

...

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

See docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel

Common Factory Methods for Creating Streams

A call to parallel() can appear 
anywhere in a stream & will have 
same effect as parallelStream()

or

List<String> wordsToFind = 

List.of("do", "re", "me", ...);

List<SearchResults> results = 

wordsToFind.stream()

...

List<SearchResults> results = 

wordsToFind.stream()

...

.parallel()

https://docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel--
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array
String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Arrays.stream(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println); 

Common Factory Methods for Creating Streams



11

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Arrays.stream(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println); 

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array

Create stream containing 
all elements in an array

Common Factory Methods for Creating Streams

See docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-T:A-
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String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Arrays.stream(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println); 

• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array

Print all elements 
in the stream

Common Factory Methods for Creating Streams
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Stream.of(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println);

Common Factory Methods for Creating Streams
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Stream.of(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println);

Common Factory Methods for Creating Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of

Create stream containing 
all elements in an array

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T-
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

String[] a = {

"a", "b", "c", "d", "e"

};

Stream<String> stream = Stream.of(a); 

stream.forEach(s -> 

System.out.println(s));

or

stream.forEach(System.out::println);

Common Factory Methods for Creating Streams

Print all elements 
in the stream
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Common Factory Methods for Creating Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#iterate

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#iterate-T-java.util.function.UnaryOperator-
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE,

BigInteger.ONE},

f -> new BigInteger[]{f[1],

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Generate & print the first 100 Fibonacci #’s

Common Factory Methods for Creating Streams
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE,

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Create the “seed,” which defines 
the initial element in the stream

Common Factory Methods for Creating Streams
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1],

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

A lambda function applied 
to the previous element to 

produce a new element

Common Factory Methods for Creating Streams
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Convert the array to its first element

Common Factory Methods for Creating Streams
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Common Factory Methods for Creating Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#limit

Short-circuit operation limits 
the stream to 100 elements

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#limit-long-
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);
Print the first 100 

Fibonacci #’s

Common Factory Methods for Creating Streams
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• There are several common ways to obtain a stream, e.g.

• From a Java collection

• From an array 

• From a static factory 
method 

Stream.iterate(new BigInteger[]{BigInteger.ONE, 

BigInteger.ONE},

f -> new BigInteger[]{f[1], 

f[0].add(f[1])})

.parallel()

.map(f -> f[0])

.limit(100)

.forEach(System.out::println);

Common Factory Methods for Creating Streams

Avoid using iterate() in a parallel stream! 
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End of Recognize Common 
Java Streams Factory Methods


