
Recognize How Java Combines Object-

Oriented & Functional Programming

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Lesson
• Recognize the benefits of combining object-oriented 

& functional programming in Java

Again, we show modern Java code fragments we’ll cover in more detail later



3

Learning Objectives in this Lesson
• Recognize the benefits of combining object-oriented 

& functional programming in Java

• Understand when, why, & how to use 
mutable state with Java



4

Combining Object-Oriented 
& Functional Programming 

in Java



5

• Java’s combination of functional & object-oriented 
paradigms is powerful!

Modern
Java 

e.g., C++,
Java, C#

e.g., C, 
FORTRAN

e.g., ML,
Haskell

e.g., Prolog

Combining Object-Oriented & Functional Programming in Java



6

• Java’s functional features help close the gap between a program’s “domain
intent” & its computations

See www.toptal.com/software/declarative-programming

Combining Object-Oriented & Functional Programming in Java

http://www.toptal.com/software/declarative-programming


7

Socket

Socket

• Java’s functional features help close the gap between a program’s “domain
intent” & its computations, e.g.,

• Domain intent defines “what”

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Process a list of URLs to images that aren’t already 
cached & transform/store the images in parallel

Combining Object-Oriented & Functional Programming in Java

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang


8

• Java’s functional features help close the gap between a program’s “domain
intent” & its computations, e.g.,

• Domain intent defines “what”

• Computations define “how”

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

List<Image> images = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList());

Process a list of URLs to images that aren’t already 
cached & transform/store the images in parallel

Socket

Socket

Combining Object-Oriented & Functional Programming in Java

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang


9

• Java’s functional features help close the gap between a program’s “domain
intent” & its computations, e.g.,

• Domain intent defines “what”

• Computations define “how”

Java functional programming features connect domain intent & computations 

List<Image> images = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList());

Socket

Socket

Combining Object-Oriented & Functional Programming in Java



10

• Likewise, Java’s object-oriented features help to structure a program’s 
software architecture

See en.wikipedia.org/wiki/Software_architecture

Logical

View

Physical

View

Development

View

Process

View

Use Case

View

Combining Object-Oriented & Functional Programming in Java

https://en.wikipedia.org/wiki/Software_architecture


11

• Likewise, Java’s object-oriented features help to structure a program’s 
software architecture

See sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/ana_desi/co_lview.htm

Logical

View

Development

View

Process

View

This view depicts sub-systems, packages, 
& classes that exhibit architecturally 

important structure & behavior

Combining Object-Oriented & Functional Programming in Java

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/workflow/ana_desi/co_lview.htm


12

• e.g., consider the ImageStreamGang program

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Combining Object-Oriented & Functional Programming in Java

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang


13

• e.g., consider the ImageStreamGang program

• Common super classes provide a 
reusable foundation for extensibility

See www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

Combining Object-Oriented & Functional Programming in Java

http://www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf


14

• e.g., consider the ImageStreamGang program

• Common super classes provide a 
reusable foundation for extensibility

• Subclasses extend the common
classes to create various custom
implementation strategies

See www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

Combining Object-Oriented & Functional Programming in Java

http://www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf


15See www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764

• e.g., consider the ImageStreamGang program

• Common super classes provide a 
reusable foundation for extensibility

• Subclasses extend the common
classes to create various custom
implementation strategies

• Java’s FP features are 
most effective when used 
to simplify computations 
within the context of an 
OO software architecture

List<Image> images = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList());

Combining Object-Oriented & Functional Programming in Java

http://www.drdobbs.com/jvm/lambda-expressions-in-java-8/240166764


16See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

• e.g., consider the ImageStreamGang program

• Common super classes provide a 
reusable foundation for extensibility

• Subclasses extend the common
classes to create various custom
implementation strategies

• Java’s FP features are 
most effective when used 
to simplify computations 
within the context of an 
OO software architecture

• Especially concurrent
& parallel computations 

List<Image> images = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList());

Combining Object-Oriented & Functional Programming in Java

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html


17

When, Why, & How to Use 
Mutable State in Java



18See www.infoq.com/articles/How-Functional-is-Java-8

• Since Java is a hybrid language, there are situations in which mutable 
changes to shared state are allowed/encouraged

When, Why, & How to Use Mutable State in Java

http://www.infoq.com/articles/How-Functional-is-Java-8


19

• Since Java is a hybrid language, there are situations in which mutable 
changes to shared state are allowed/encouraged

• e.g., Java collections
framework classes

See docs.oracle.com/javase/8/docs/technotes/guides/collections

When, Why, & How to Use Mutable State in Java

http://docs.oracle.com/javase/8/docs/technotes/guides/collections


20

• However, you’re usually better off by
minimizing/avoiding the use of shared 
mutable state in your programs!!

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

When, Why, & How to Use Mutable State in Java

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html


21

• If you do share mutable state in your programs then make sure you add the 
necessary synchronizers and/or use concurrent/synchronized collections 

When, Why, & How to Use Mutable State in Java

Category Definition

Atomic 
operations

An action that effectively happens all at once 
or not at all

Mutual exclusion Allows concurrent access & updates to 
shared mutable data without race conditions

Coordination Ensures computations run properly, e.g., in 
the right order, at the right time, under the 
right conditions, etc.

Barrier 
synchronization

Ensures that any thread(s) must stop at a 
certain point & cannot proceed until all other 
thread(s) reach this barrier

See www.youtube.com/playlist?list=PLZ9NgFYEMxp6IM0Cddzr_qjqfiGC2pq1a

http://www.youtube.com/playlist?list=PLZ9NgFYEMxp6IM0Cddzr_qjqfiGC2pq1a


22

End of Recognize How Java 
Combines Object-Oriented 
& Functional Programming


