Programming Goncepts & Features

Douglas C. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

 Understand key functional programming
concepts & features supported by Java

(

)

Java$8

These functional programming features were added in Java 8 & expanded later

Learning Objectives in this Lesson

« Know how to compare & contrast functional
programming & object-oriented programming

Abstraction

Key Functional Programming
Concepts in Java

Key Functional Programming Concepts in Java

« Functional programming has its roots
in lambda calculus

See en.wikipedia.org/wiki/Functional programming

https://en.wikipedia.org/wiki/Functional_programming

Key Functional Programming Concepts in Java

« Functional programming has its roots
in lambda calculus, e.g.,

« Computations are treated as
evaluation of math functions

Input x U

Function f

Output f(x) \

Ideally, each function is
“pure,” i.e., it has no side-
effects on memory or I/0O

See en.wikipedia.org/wiki/Functional programming#Pure functions

https://en.wikipedia.org/wiki/Functional_programming#Pure_functions

Key Functional Programming Concepts in Java

 Functional programming has its roots Input X
in lambda calculus, e.g., @
« Computations are treated as Function f

evaluation of math functions

Output f(x) | |

Output g(f(x))
Note "function composition”: the

output of one function serves as
the input to the next function, etc.

Function h

Output h(g(f(x)))@

See martinfowler.com/articles/collection-pipeline

https://martinfowler.com/articles/collection-pipeline/

Key Functional Programming Concepts in Java

 Functional programming has its roots Input X
in lambda calculus, e.g., @
« Computations are treated as Function f

evaluation of math functions
: _— Output f(x)
Functionally compute the 'nt"’ factorial in paralle/

long factorial / :
(long n) { Function g
return LongStream Output g(f(x))
.rangeClosed (1, n) @
.parallel () -
reduce (1, Function h
(a, b) -=> a * b); Output h(g(f(x)))@
}

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Key Functional Programming Concepts in Java

« Functional programming has its roots

in lambda calculus, e.g.,

- Computations are treated as

Range of longs from 1..8

longs 1..4

evaluation of math functions

long factorial
(long n) {
return LongStream
.rangeClosed (1,
.parallel ()
.reduce (1,

longs 1..2

longs 3..4

longs 5..8

g;\\\\‘\~\

(a, b) -> a * b);

longs 5..6

longs 7..8

Generate a stream of longs from
1 to n in parallel (where n == 8)

See www.baeldung.com/java-8-streams

http://www.baeldung.com/java-8-streams

Key Functional Programming Concepts in Java

« Functional programming has its roots

Range of longs from 1..8

in lambda calculus, e.g.,

Computations are treated as longs 1..4 longs 5..8
evaluation of math functions
longs 1..2 longs 3..4 longs 5..6 longs 7..8
long factorial [| | |
(long n) { Process Process Process Process
return LongStream sequentially sequentially sequentially sequentially
.rangeClosed (1, n) é ‘ ‘
.parallel () @ @
.reduce(l, —/mm— ; . .
(a, b) => a * b); Multiply pair-wise values in parallel

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Key Functional Programming Concepts in Java

 Functional programming has its roots Range of longs from 1..8
in lambda calculus, e.g.,
* Computations are treated as longs 1..4 longs 5..8
evaluation of math functions
longs 1..2 longs 3..4 longs 5..6 longs 7..8
long factorial [| | |
(long n) { Process Process Process Process
sequentially sequentially sequentially sequentially

return LongStream
.rangeClosed (1, n)
.parallel ()

.reduce (1, 2 reduce() reduce()
(a, b) -> a * b); reduce()

} / {40,320

Successively combine two immutable long values & produce a new one

Key Functional Programming Concepts in Java

« Functional programming has its roots
in lambda calculus, e.g.,

« Changing state & mutable shared data
are discouraged to avoid various hazards

See en.wikipedia.org/wiki/Side effect (computer science)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

Key Functional Programming Concepts in Java

« Functional programming has its roots class Total {
in lambda calculus, e.g., public long mTotal = 1;

public void mult (long n)
{ mTotal *= n; }
« Changing state & mutable shared data }
are discouraged to avoid various hazards

long factorial (long n) {
Total t = new Total();
LongStream.rangeClosed(1l, n)
.parallel ()
.forEach(t: :mult) ;
return t.mTotal;

}

See github.com/douglascraigschmidt/Livel essons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Key Functional Programming Concepts in Java

« Functional programming has its roots class Total {
in lambda calculus, e.g., public long mTotal = 1;

public void mult\(long n)
{ mTotal *= n; }
« Changing state & mutable shared data }
are discouraged to avoid various hazards Shared mutable state

long factorial (long n) {
Total t = new Total();
LongStream.rangeClosed(1l, n)
.parallel ()
.forEach(t: :mult) ;
return t.mTotal;

}

See github.com/douglascraigschmidt/Livel essons/tree/master/Java8/ex16

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Key Functional Programming Concepts in Java

« Functional programming has its roots class Total {
in lambda calculus, e.g., public long mTotal

1;

public void mult (long n)
{ mTotal *= n; }
« Changing state & mutable shared data }
are discouraged to avoid various hazards

i E

long factorial (long n) { : i
Total t = new Total(); i ; - !
LongStream.rangeClosed(1l, n) ! <{}7 E: E: E
: [| [| :

! I

! I

! I

! I

! I

! I

! I

! I

rangeClosed()

. L— parallel ()
arallel
Run in paralle/ .forEach(t: :mult) ; & 0 T r
return t.mTotal; I I
} forEach()
(I T U

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Key Functional Programming Concepts in Java

« Functional programming has its roots class Total {
in lambda calculus, e.g., public long mTotal = 1;

public void mult (long n)
{ mTotal *= n; }

« Changing state & mutable shared data } /
are discouraged to avoid various hazards

long factorial (long n) {
Total t = new Total();
LongStream.rangeClosed(1l, n)
.parallel ()

.forEach(t: :mult) ;
return t.mTotal;

}

Beware of race conditions!!!

See en.wikipedia.org/wiki/Race condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

Key Functional Programming Concepts in Java

« Functional programming has its roots class Total {
in lambda calculus, e.g., public long mTotal = 1;

public void mult (long n)
{ mTotal *= n; }

Main Memory
11 v

« Changing state & mutable shared data }
are discouraged to avoid various hazards

long factorial (long n) {

Total t = new Total();

LongStream.rangeClosed(1l, n)
.parallel ()
.forEach(t: :mult) ;

return t.mTotal;\\\\

Thread, Thread, Thread,

Beware of inconsistent memory Vvisibility K % ¢

}

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Key Functional Programming Concepts in Java

« Functional programming has its roots class Total {
in lambda calculus, e.g., public long mTotal = 1;

public void mult (long n)
{ mTotal *= n; }
« Changing state & mutable shared data } 4
are discouraged to avoid various hazards
J SMOKEY

long factorial (long n) { L ——
Total t = new Total() ; '
LongStream.rangeClosed(1l, n)
.parallel ()
.forEach(t: :mult) ;
return t.mTotal;

}

Only you can prevent
concurrency hazards!

In Java you must avoid these hazards, i.e., the compiler & JVM won't save you..

Key Functional Programming Concepts in Java

« Functional programming has its roots
in lambda calculus, e.g.,

 Instead, focus is on “immutable” objects

See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

Key Functional Programming Concepts in Java

« Functional programming has its roots final class String {
in lambda calculus, e.g., private final char wvaluel];

public String(String s) {
value = s;

} -
 Instead, focus is on “immutable” objects

« Immutable object state cannot
change after it is constructed

public int length() {
return value.length;

}

See www.baeldung.com/java-immutable-object

http://www.baeldung.com/java-immutable-object

Key Functional Programming Concepts in Java

 Functional programming has its roots final class String {
in lambda calculus, e.g., private final char wvaluel];

public String(String s) {
value = s;

} -
 Instead, focus is on “immutable” objects

public int length() {
return value.length;

}
« Java String is a common example

of an immutable object }

See docs.oracle.com/javase/8/docs/api/java/lang/String.html

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Key Functional Programming Concepts in Java

 Functional programming has its roots final class String {
in lambda calculus, e.g., private final char value[];

public String(String s) {
value = s;

} -
 Instead, focus is on “immutable” objects

public int length() {
return value.length;

}
« Java String is a common example

of an immutable object }
* Fields are final & only accessor methods

See www.programcreek.com/2013/04/why-string-is-immutable-in-java

http://www.programcreek.com/2013/04/why-string-is-immutable-in-java

Functional vs. Object-Oriented
Programming In Java

23

Functional vs. Object-Oriented Programming in Java

 In contrast to functional programming, OO

programming employs “hierarchical data Java lterator

abstraction”

LevelOrder
lterator

InOrder
lterator

PostOrder
lterator

PreOrder
lterator

See en.wikipedia.org/wiki/Object-oriented design

https://en.wikipedia.org/wiki/Object-oriented_design

Functional vs. Object-Oriented Programming in Java

 In contrast to functional programming, OO
programming employs “hierarchical data
abstraction”, e.q.

« Components are based on stable class
roles & relationships extensible via
inheritance & dynamic binding

ExpressionTree

»| ComponentNode

A

:

L

Composite
UnaryNode

LeafNode

A

CompositeBinary
Node

CompositeNegate

Node

A

Composite
AddNode

Composite
SubtractNode

Composite
MultiplyNode

Composite
DivideNode

See en.wikipedia.org/wiki/Object-oriented programming

https://en.wikipedia.org/wiki/Object-oriented_programming

Functional vs. Object-Oriented Programming in Java

 In contrast to functional programming, OO
programming employs “hierarchical data !

Initialize

!

Prompt User

abstraction”, e.q.

« Components are based on stable class
roles & relationships extensible via
inheritance & dynamic binding

« Rather than algorithmic actions
implemented as functions

See www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

http://www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

Functional vs. Object-Oriented Programming in Java

« In contrast to functional programming, OO Tree tree = ...;
programming employs “hierarchical data Vls“;" printVisitor =
abstraction”, e.g. makeVisitor(...);

for (Iterator<Tree> iter =
tree.iterator () ;
iter.hasNext () ;)
iter.next ()

« State is encapsulated by methods . ..
.accept (printvVisitor) ;

that perform imperative statements

See en.wikipedia.org/wiki/Imperative programming

https://en.wikipedia.org/wiki/Imperative_programming

Functional vs. Object-Oriented Programming in Java

« In contrast to functional programming, OO Tree tree = ...;
programming employs “hierarchical data V131t§rvl_’r?nt"131t°r =
abstraction”, e.g. makeVisitor(...);

for (Iterator<Tree> iter =
tree.iterator () ;
iter.hasNext () ;)
iter.next ()

saccepé&pr]zntVisitor) ;

Access & update
internal iterator state

« State is encapsulated by methods
that perform imperative statements

State is often “mutable” in OO programs

End of Understand Java’s
Key Functional Programming
Concepts & Features

29

