
Understand Java’s Key Functional

Programming Concepts & Features

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Lesson
• Understand key functional programming

concepts & features supported by Java

These functional programming features were added in Java 8 & expanded later

3

Learning Objectives in this Lesson
• Understand key functional programming

concepts & features supported by Java

• Know how to compare & contrast functional
programming & object-oriented programming

4

Key Functional Programming
Concepts in Java

5See en.wikipedia.org/wiki/Functional_programming

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus

https://en.wikipedia.org/wiki/Functional_programming

6

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

See en.wikipedia.org/wiki/Functional_programming#Pure_functions

Function f

Input x

Output f(x)

Ideally, each function is
“pure,” i.e., it has no side-
effects on memory or I/O

https://en.wikipedia.org/wiki/Functional_programming#Pure_functions

7

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

See martinfowler.com/articles/collection-pipeline

Note “function composition”: the
output of one function serves as

the input to the next function, etc.

Function f

Function g

Function h

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

https://martinfowler.com/articles/collection-pipeline/

8

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

Function f

Function g

Function h

Input x

Output f(x)

Output g(f(x))

Output h(g(f(x)))

long factorial

(long n) {

return LongStream

.rangeClosed(1, n)

.parallel()

.reduce(1,

(a, b) -> a * b);

}

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Functionally compute the ‘nth’ factorial in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

9

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

Generate a stream of longs from
1 to n in parallel (where n == 8)

See www.baeldung.com/java-8-streams

longs 1..2 longs 3..4 longs 5..6 longs 7..8

longs 1..4 longs 5..8

Range of longs from 1..8

long factorial

(long n) {

return LongStream

.rangeClosed(1, n)

.parallel()

.reduce(1,

(a, b) -> a * b);

}

http://www.baeldung.com/java-8-streams

10

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

long factorial

(long n) {

return LongStream

.rangeClosed(1, n)

.parallel()

.reduce(1,

(a, b) -> a * b);

}

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

2 12 30 56

Multiply pair-wise values in parallel

longs 1..2 longs 3..4 longs 5..6 longs 7..8

longs 1..4 longs 5..8

Range of longs from 1..8

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

11

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

long factorial

(long n) {

return LongStream

.rangeClosed(1, n)

.parallel()

.reduce(1,

(a, b) -> a * b);

}

longs 1..2 longs 3..4 longs 5..6 longs 7..8

longs 1..4 longs 5..8

Range of longs from 1..8

reduce()

reduce()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

2 12 30 56

24

40,320

reduce() 1,680

Successively combine two immutable long values & produce a new one

12

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

See en.wikipedia.org/wiki/Side_effect_(computer_science)

https://en.wikipedia.org/wiki/Side_effect_(computer_science)

13

class Total {

public long mTotal = 1;

public void mult(long n)

{ mTotal *= n; }

}

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

long factorial(long n) {

Total t = new Total();

LongStream.rangeClosed(1, n)

.parallel()

.forEach(t::mult);

return t.mTotal;

}

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

14

class Total {

public long mTotal = 1;

public void mult(long n)

{ mTotal *= n; }

}

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

long factorial(long n) {

Total t = new Total();

LongStream.rangeClosed(1, n)

.parallel()

.forEach(t::mult);

return t.mTotal;

}

Shared mutable state

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

15

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

long factorial(long n) {

Total t = new Total();

LongStream.rangeClosed(1, n)

.parallel()

.forEach(t::mult);

return t.mTotal;

}

Run in parallel

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

rangeClosed()

parallel()

forEach()

class Total {

public long mTotal = 1;

public void mult(long n)

{ mTotal *= n; }

}

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

16

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

long factorial(long n) {

Total t = new Total();

LongStream.rangeClosed(1, n)

.parallel()

.forEach(t::mult);

return t.mTotal;

}

class Total {

public long mTotal = 1;

public void mult(long n)

{ mTotal *= n; }

}

Beware of race conditions!!!

See en.wikipedia.org/wiki/Race_condition#Software

https://en.wikipedia.org/wiki/Race_condition#Software

17See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

long factorial(long n) {

Total t = new Total();

LongStream.rangeClosed(1, n)

.parallel()

.forEach(t::mult);

return t.mTotal;

}

class Total {

public long mTotal = 1;

public void mult(long n)

{ mTotal *= n; }

}

Beware of inconsistent memory visibility

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

18In Java you must avoid these hazards, i.e., the compiler & JVM won’t save you..

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

long factorial(long n) {

Total t = new Total();

LongStream.rangeClosed(1, n)

.parallel()

.forEach(t::mult);

return t.mTotal;

}

class Total {

public long mTotal = 1;

public void mult(long n)

{ mTotal *= n; }

}

Only you can prevent
concurrency hazards!

19See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

• Instead, focus is on “immutable” objects

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

20See www.baeldung.com/java-immutable-object

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

• Instead, focus is on “immutable” objects

• Immutable object state cannot
change after it is constructed

final class String {

private final char value[];

...

public String(String s) {

value = s;

...

}

public int length() {

return value.length;

}

...

}

http://www.baeldung.com/java-immutable-object

21See docs.oracle.com/javase/8/docs/api/java/lang/String.html

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

• Instead, focus is on “immutable” objects

• Immutable object state cannot
change after it is constructed

• Java String is a common example
of an immutable object

final class String {

private final char value[];

...

public String(String s) {

value = s;

...

}

public int length() {

return value.length;

}

...

}

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

22See www.programcreek.com/2013/04/why-string-is-immutable-in-java

Key Functional Programming Concepts in Java
• Functional programming has its roots

in lambda calculus, e.g.,

• Computations are treated as
evaluation of math functions

• Changing state & mutable shared data
are discouraged to avoid various hazards

• Instead, focus is on “immutable” objects

• Immutable object state cannot
change after it is constructed

• Java String is a common example
of an immutable object

• Fields are final & only accessor methods

final class String {

private final char value[];

...

public String(String s) {

value = s;

...

}

public int length() {

return value.length;

}

...

}

http://www.programcreek.com/2013/04/why-string-is-immutable-in-java

23

Functional vs. Object-Oriented
Programming in Java

24See en.wikipedia.org/wiki/Object-oriented_design

Functional vs. Object-Oriented Programming in Java
• In contrast to functional programming, OO

programming employs “hierarchical data
abstraction”

https://en.wikipedia.org/wiki/Object-oriented_design

25

Functional vs. Object-Oriented Programming in Java
• In contrast to functional programming, OO

programming employs “hierarchical data
abstraction”, e.g.

• Components are based on stable class
roles & relationships extensible via
inheritance & dynamic binding

See en.wikipedia.org/wiki/Object-oriented_programming

https://en.wikipedia.org/wiki/Object-oriented_programming

26

Functional vs. Object-Oriented Programming in Java
• In contrast to functional programming, OO

programming employs “hierarchical data
abstraction”, e.g.

• Components are based on stable class
roles & relationships extensible via
inheritance & dynamic binding

• Rather than algorithmic actions
implemented as functions

See www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

http://www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

27

Functional vs. Object-Oriented Programming in Java
• In contrast to functional programming, OO

programming employs “hierarchical data
abstraction”, e.g.

• Components are based on stable class
roles & relationships extensible via
inheritance & dynamic binding

• State is encapsulated by methods
that perform imperative statements

See en.wikipedia.org/wiki/Imperative_programming

Tree tree = ...;

Visitor printVisitor =

makeVisitor(...);

for(Iterator<Tree> iter =

tree.iterator();

iter.hasNext();)

iter.next()

.accept(printVisitor);

https://en.wikipedia.org/wiki/Imperative_programming

28

Functional vs. Object-Oriented Programming in Java
• In contrast to functional programming, OO

programming employs “hierarchical data
abstraction”, e.g.

• Components are based on stable class
roles & relationships extensible via
inheritance & dynamic binding

• State is encapsulated by methods
that perform imperative statements

State is often “mutable” in OO programs

Tree tree = ...;

Visitor printVisitor =

makeVisitor(...);

for(Iterator<Tree> iter =

tree.iterator();

iter.hasNext();)

iter.next()

.accept(printVisitor);

Access & update
internal iterator state

29

End of Understand Java’s
Key Functional Programming

Concepts & Features

