
Applying Key Methods in the 

Observable Class (Part 7)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize key methods in the 

Observable class & how they are
applied in the case studies

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html


3

Learning Objectives in this Part of the Lesson
• Case study ex3 shows how to 

apply various RxJava operations 
asynchronously to multiply &
reduce Big Fraction objects

• e.g., fromIterable(), map(), just(),
flatMap(), reduce(), doOnSuccess(),
ignoreElement(), subscribeOn(),
& Schedulers.computation()

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Observable/ex3

return Observable

.fromIterable(bigFractions)

.flatMap(bf -> Observable

.just(bf)

.subscribeOn

(Schedulers

.computation())

.map(multiplyFracs))

.reduce(BigFraction::add)

.doOnSuccess(displayResults)

.ignoreElement();

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3


4

Applying Key Methods in 
the Observable Class to ex3



5

• testFractionMultiplications2()

• Use an asynchronous Observable 
stream & a pool of threads to
multiply & add BigFractions

Applying Key Methods in the Observable Class to ex3

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

return Observable

.fromIterable(bigFractions)

.flatMap(bf -> Observable

.just(bf)

.subscribeOn

(Schedulers

.computation())

.map(multiplyFracs))

.reduce(BigFraction::add)

.doOnSuccess(displayResults)

.ignoreElement();

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java


6

• testFractionMultiplications2()

• Use an asynchronous Observable 
stream & a pool of threads to
multiply & add BigFractions

• Demonstrates Observable methods

• e.g., fromIterable(), map(), just(), 
flatMap(), reduce(), ignoreElement(), 
subscribeOn(), & Schedulers 
.computation() methods

Applying Key Methods in the Observable Class to ex3

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

return Observable

.fromIterable(bigFractions)

.flatMap(bf -> Observable

.just(bf)

.subscribeOn

(Schedulers

.computation())

.map(multiplyFracs))

.reduce(BigFraction::add)

.doOnSuccess(displayResults)

.ignoreElement();

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java


7

• testFractionMultiplications2()

• Use an asynchronous Observable 
stream & a pool of threads to
multiply & add BigFractions

• Demonstrates Observable methods

• e.g., fromIterable(), map(), just(), 
flatMap(), reduce(), ignoreElement(), 
subscribeOn(), & Schedulers 
.computation() methods

Applying Key Methods in the Observable Class to ex3
return Observable

.fromIterable(bigFractions)

.flatMap(bf -> Observable

.just(bf)

.subscribeOn

(Schedulers

.computation())

.map(multiplyFracs))

.reduce(BigFraction::add)

.doOnSuccess(displayResults)

.ignoreElement();

It also illustrates how to apply 
the flatMap() concurrency idiom



8

• testFractionMultiplications2()

• Use an asynchronous Observable 
stream & a pool of threads to
multiply & add BigFractions

• Demonstrates Observable methods

• Also demonstrates a Maybe method

• e.g., doOnSuccess()

Applying Key Methods in the Observable Class to ex3
return Observable

.fromIterable(bigFractions)

.flatMap(bf -> Observable

.just(bf)

.subscribeOn

(Schedulers

.computation())

.map(multiplyFracs))

.reduce(BigFraction::add)

.doOnSuccess(displayResults)

.ignoreElement();



9

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

Maybe<U> reduce

(BiFunction<T, T, T> reducer)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce-io.reactivex.rxjava3.functions.BiFunction-


10

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

• The result of that function is then fed 
along with the second item emitted by the 
current Observable into the same function

Maybe<U> reduce

(BiFunction<T, T, T> reducer)



11

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

• The result of that function is then fed 
along with the second item emitted by the 
current Observable into the same function

• This continues until all items have been 
emitted by the current & finite 
Observable

Maybe<U> reduce

(BiFunction<T, T, T> reducer)



12

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

• The result of that function is then fed 
along with the second item emitted by the 
current Observable into the same function

• The final result is emitted from the final 
call as the sole item of a Maybe

Maybe<U> reduce

(BiFunction<T, T, T> reducer)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html


13

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

• The result of that function is then fed 
along with the second item emitted by the 
current Observable into the same function

• The final result is emitted from the final 
call as the sole item of a Maybe

• If there are no items emitted by the 
Observable the Maybe will be empty

Maybe<U> reduce

(BiFunction<T, T, T> reducer)



14

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

• This operator requires the upstream 
to signal onComplete() before the 
accumulator object can be emitted



15

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

• This operator requires the upstream 
to signal onComplete() before the 
accumulator object can be emitted

• Sources that are infinite & never 
complete will never emit anything 
through this operator 

• An infinite source may lead to a 
fatal OutOfMemoryError



16

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

• This operator requires the upstream 
to signal onComplete() before the 
accumulator object can be emitted

• Project Reactor’s Flux.reduce() 
method works the same

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce-java.util.function.BiFunction-


17

Applying Key Methods in the Observable Class to ex3
• The reduce() method

• Returns a Maybe that applies an
accumulator function to the 1st item 
emitted by current Observable

• This operator requires the upstream 
to signal onComplete() before the 
accumulator object can be emitted

• Project Reactor’s Flux.reduce() 
method works the same

• Similar to the Stream.reduce() 
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-


18

• flatMap() is often used when each 
item emitted by a stream needs to 
have its own threading operators 
applied to it

• i.e., the “flatMap() concurrency 
idiom”

Applying Key Methods in the Observable Class to ex3

See www.nurkiewicz.com/2017/09/idiomatic-concurrency-flatmap-vs.html

return Observable

.fromIterable(bigFractions)

.flatMap(bf -> Observable

.just(bf)

.subscribeOn

(Schedulers

.computation())

.map(multiplyFracs))

.reduce(BigFraction::add)

.doOnSuccess(displayResults)

.ignoreElement();

http://www.nurkiewicz.com/2017/09/idiomatic-concurrency-flatmap-vs.html


19

• flatMap() is often used when each 
item emitted by a stream needs to 
have its own threading operators 
applied to it

• i.e., the “flatMap() concurrency 
idiom”

Applying Key Methods in the Observable Class to ex3
return Observable

.fromIterable(bigFractions)

.flatMap(bf -> Observable

.just(bf)

.subscribeOn

(Schedulers

.computation())

.map(multiplyFracs))

.reduce(BigFraction::add)

.doOnSuccess(displayResults)

.ignoreElement();

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

Each instance of this inner chain 
runs in a background thread in 
the computation thread pool

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java


20See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Observable/ex3

Applying Key Methods in the Observable Class to ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3


21

End of Applying Key Methods 
in the Observable Class (Part 7)


