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Learning Objectives in this Part of the Lesson

« Recognize key methods in the Class Observable<T>
Observable class & how they are | ... ..q00ex
applled |n the case StUdleS io.reactivex.rxjava3.core.Observable<T>

Type Parameters:
T - the type of the items emitted by the Observable

All Implemented Interfaces:
ObservableSource<T>

Direct Known Subclasses:
ConnectableObservable, GroupedObservable, Subject

public abstract class Observable<T>
extends Object
implements ObservableSource<T>

The Observable class is the non-backpressured, optionally multi-valued base
reactive class that offers factory methods, intermediate operators and the ability to
consume synchronous and/or asynchronous reactive datatlows.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html
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Learning Objectives in this Part of the Lesson

« Case study ex3 shows how to return Observable

apply various RxJava operations .fromIterable (bigFractions)

asynchronously to multiply &

reduce Big Fraction objects -flatMap (bf -> Observable

_ .just (bf)

- e.g.,, fromIterable(), map(), just(), .subscribeOn
flatMap(), reduce(), doOnSuccess(), (Schedulers
ignoreElement(), subscribeOn(), .computation () )

& Schedulers.computation() .map (multiplyFracs))

.reduce (BigFraction: :add)
.doOnSuccess (displayResults)

.ignoreElement() ;

See github.com/douglascraigschmidt/Livel essons/tree/master/Reactive/Observable/ex3
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Applying Key Methods in
the Observable Class to ex3




Applying Key Methods in the Observable Class to ex3

» testFractionMultiplications2() return Observable

. Use an asynchronous Observable -fromIterable (bigFractions)
Strela'ml & a %%OI _Of thre_ads to .flatMap (bf -> Observable
multiply & add BigFractions .just (bf)

.subscribeOn
(Schedulers
.computation())
.map (multiplyFracs))
.reduce (BigFraction: :add)

.doOnSuccess (displayResults)

.ignoreElement() ;

See Reactive/Observable/ex3/src/main/java/ObservableEx.java
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Applying Key Methods in the Observable Class to ex3

» testFractionMultiplications2() return Observable
.fromIterable (bigFractions)

.flatMap (bf -> Observable
. just (bf)
 Demonstrates Observable methods .subscribeOn

+ e.q, fromIterable(), map(), just(), " computation())
flatMap(), reduce(), ignoreElement(), _map (multiplyFracs))
subscribeOn(), & Schedulers

.computation() methods .reduce (BigFraction: :add)

.doOnSuccess (displayResults)

.ignoreElement() ;

See Reactive/Observable/ex3/src/main/java/ObservableEx.java
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Applying Key Methods in the Observable Class to ex3

» testFractionMultiplications2() return Observable
.fromIterable (bigFractions)

.flatMap (bf -> Observable

. Just (bf)

.subscribeOn
(Schedulers
.computation())

.map (multiplyFracs))

« Demonstrates Observable methods

 e.g., fromlterable(), map(), just(),
flatMap(), reduce(), ignoreElement(),
subscribeOn(), & Schedulers
.computation() methods

.reduce (BigFraction: :add)

It also illustrates how to apply

- .doOnSuccess (displayResults
the flatMap() concurrency idiom (display )

.ignoreElement() ;




Applying Key Methods in the Observable Class to ex3

» testFractionMultiplications2() return Observable
.fromIterable (bigFractions)

.flatMap (bf -> Observable

.just (bf)
.subscribeOn
(Schedulers
 Also demonstrates a Maybe method )
.computation())
* €.g., doOnSuccess() .map (multiplyFracs))

.reduce (BigFraction: :add)
.doOnSuccess (displayResults)

.ignoreElement() ;




Applying Key Methods in the Observable Class to ex3

* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item
emitted by current Observable

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce



http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce-io.reactivex.rxjava3.functions.BiFunction-

Applying Key Methods in the Observable Class to ex3

* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item
emitted by current Observable

* The result of that function is then fed
along with the second item emitted by the
current Observable into the same function
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Applying Key Methods in the Observable Class to ex3

* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item
emitted by current Observable

* The result of that function is then fed
along with the second item emitted by the
current Observable into the same function

» This continues until all items have been
emitted by the current & finite
Observable
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Applying Key Methods in the Observable Class to ex3

* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item

emitted by current Observable ( )
Maybe<T> { —9€~
« The final result is emitted from the final \ —|—>

call as the sole item of a Maybe

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html
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Applying Key Methods in the Observable Class to ex3
* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item
emitted by current Observable

« The final result is emitted from the final
call as the sole item of a Maybe

« If there are no items emitted by the
Observable the Maybe will be empty
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Applying Key Methods in the Observable Class to ex3

* The reduce() method

 This operator requires the upstream

to signal onComplete() before the
accumulator object can be emitted
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Applying Key Methods in the Observable Class to ex3

* The reduce() method O O O |

Y ¥ Y Wy

reduce{ (<> j) >§}

 This operator requires the upstream
to signal onComplete() before the
accumulator object can be emitted

« Sources that are infinite & never
complete will never emit anything
through this operator

« An infinite source may lead to a
fatal OutOfMemoryError
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Applying Key Methods in the Observable Class to ex3

* The reduce() method

H i

reduce ((',Q) — O )
‘._,' i ;
* Project Reactor’s Flux.reduce() I >
method works the same U
See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce
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Applying Key Methods in the Observable Class to ex3

* The reduce() method

 Similar to the Stream.reduce()
method in Java Streams

reduce

Optional<T> reduce(BinaryOperator<T> accumulator)

Performs a reduction on the elements of this stream, using an associative
accumulation function, and returns an Optional describing the reduced
value, if any. This is equivalent to:

boolean foundAny = false;
T result = null;
for (T element : this stream) {
if (!foundAny) {
foundAny = true;
result = element;

}

else
result = accumulator.apply(result, element);

}
return foundAny ? Optional.of(result) : Optional.empty();

but is not constrained to execute sequentially.

The accumulator function must be an associative function.

This is a terminal operation.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce
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Applying Key Methods in the Observable Class to ex3

« flatMap() is often used when each return Observable

item emitted by a stream needs to .fromIterable (bigFractions)
have its own threading operators
applied to it .flatMap(bf -> Observable
_ .just (bf)
* i.e., the “flatMap() concurrency _subscribeOn
idiom” (Schedulers

.computation())
.map (multiplyFracs))

.reduce (BigFraction: :add)
.doOnSuccess (displayResults)

.ignoreElement() ;

See www.nurkiewicz.com/2017/09/idiomatic-concurrency-flatmap-vs.html



http://www.nurkiewicz.com/2017/09/idiomatic-concurrency-flatmap-vs.html

Applying Key Methods in the Observable Class to ex3

« flatMap() is often used when each return Observable

item emitted by a stream needs to .fromIterable (bigFractions)
have its own threading operators
applied to it .flatMap (bf -> Observable

. “ . just (bf)
- e, the “flatMap() concurrency subscribeOn

idiom (Schedulers

.computation())
) . ) . ltiplyF
Each instance of this inner chain map (multiplyFracs))

runs in a background thread in
the computation thread pool

.reduce (BigFraction: :add)

.doOnSuccess (displayResults)

.ignoreElement() ;

See Reactive/Observable/ex3/src/main/java/ObservableEx.java
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Applying Key Methods in the Observable Class to ex3

Bl rile Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help observable-ex3 - ObservableEx java [observable-ex3.main] - [u] X
ex3 src main  java =€ ObservableEx =/ testFractionMultiplications1 “~ observable-ex3 ¥ > & G Git ¥ vV A = O Q
T Project Files v €@ = &» — @ BigFractionUtilsjava € ObservableExjava *
£ T s ~ v B
" Mimsinisicmdln * Use an asynchronous Observable stream and a pool of threads to -
v W java : ; : g o ; 9
2 v BN utils * perform BigFraction reductions and multiplications. &
5 B
:‘E_ € AsyncTester */
1 ‘© BigFraction = 2 - = = s
" ® b raciionutis @ public static CompletablefftestFractionMultiplications2()J{
= © HeapSort StringBuffer sb =
£ 1 2 5 B 2 z &
£ i new StringBuffer(">> Calling testFractionMultiplications2()\n");
O € ObservableEx
=]
S & main.iml
v g D:\Douglas Schmidt\Dropbox\Documet sb.append(" Printing sorted r\esults:");
3 > gradle
:‘,) > idea
< > I build // Process the function in a observable stream.
&
I > B gradle return Observable
src
S classpath // Emit a stream of random unreduced big fractions.
& gitignore .create(ObservableEx:: bigFractionEmitter)
S project
build.gradle
gradlew // Iterate thru the elements using RxJava's flatMap()
M gradiew.bat // concurrency idiom to reduce and multiply these
settings.gradle . 5
> I Extensions // fractions asynchronously in a thread pool.
.flatMap(unreducedFraction —
reduceAndMultiplyFraction(unreducedFraction,
Schedulers.computation()))
// Collect the results into an ArraylList.
3 .collectInto(new ArrayList<BigFraction>(), List::add)
f;' // Process the ArraylList and return a Completable that
K9Gt =T0D0 P 4Run O 6 Problems B Terminal o 7 ' Q Event Log
(]} 14531 CRLF UTF-8 4spaces P master

See github.com/douglascraigschmidt/Livel essons/tree/master/Reactive/Observable/ex3
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End of Applying Key Methods
in the Observable Class (Part 7)
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