Observahle Class (Part 1}

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Vanderbilt University
Nashuville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key methods in the Class Observable<T>
Observable class & how they are |q00ex
applled |n the case StUdleS io.reactivex.rxjava3.core.Observable<T>

Type Parameters:
T - the type of the items emitted by the Observable

All Implemented Interfaces:
ObservableSource<T>

Direct Known Subclasses:
ConnectableObservable, GroupedObservable, Subject

public abstract class Observable<T>
extends Object
implements ObservableSource<T>

The Observable class is the non-backpressured, optionally multi-valued base
reactive class that offers factory methods, intermediate operators and the ability to
consume synchronous and/or asynchronous reactive datatlows.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Learning Objectives in this Part of the Lesson

« Case study ex3 shows how to return Observable

apply various RxJava operations .fromIterable (bigFractions)

asynchronously to multiply &

reduce Big Fraction objects -flatMap (bf -> Observable

_ .just (bf)

- e.g.,, fromIterable(), map(), just(), .subscribeOn
flatMap(), reduce(), doOnSuccess(), (Schedulers
ignoreElement(), subscribeOn(), .computation ())

& Schedulers.computation() .map (multiplyFracs))

.reduce (BigFraction: :add)
.doOnSuccess (displayResults)

.ignoreElement() ;

See github.com/douglascraigschmidt/Livel essons/tree/master/Reactive/Observable/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3

Applying Key Methods in
the Observable Class to ex3

Applying Key Methods in the Observable Class to ex3

» testFractionMultiplications2() return Observable

. Use an asynchronous Observable -fromIterable (bigFractions)
Strela'ml & a %%OI _Of thre_ads to .flatMap (bf -> Observable
multiply & add BigFractions .just (bf)

.subscribeOn
(Schedulers
.computation())
.map (multiplyFracs))
.reduce (BigFraction: :add)

.doOnSuccess (displayResults)

.ignoreElement() ;

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

Applying Key Methods in the Observable Class to ex3

» testFractionMultiplications2() return Observable
.fromIterable (bigFractions)

.flatMap (bf -> Observable
. just (bf)
 Demonstrates Observable methods .subscribeOn

+ e.q, fromIterable(), map(), just(), " computation())
flatMap(), reduce(), ignoreElement(), _map (multiplyFracs))
subscribeOn(), & Schedulers

.computation() methods .reduce (BigFraction: :add)

.doOnSuccess (displayResults)

.ignoreElement() ;

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

Applying Key Methods in the Observable Class to ex3

» testFractionMultiplications2() return Observable
.fromIterable (bigFractions)

.flatMap (bf -> Observable

. Just (bf)

.subscribeOn
(Schedulers
.computation())

.map (multiplyFracs))

« Demonstrates Observable methods

 e.g., fromlterable(), map(), just(),
flatMap(), reduce(), ignoreElement(),
subscribeOn(), & Schedulers
.computation() methods

.reduce (BigFraction: :add)

It also illustrates how to apply

- .doOnSuccess (displayResults
the flatMap() concurrency idiom (display)

.ignoreElement() ;

Applying Key Methods in the Observable Class to ex3

» testFractionMultiplications2() return Observable
.fromIterable (bigFractions)

.flatMap (bf -> Observable

.just (bf)
.subscribeOn
(Schedulers
 Also demonstrates a Maybe method)
.computation())
* €.g., doOnSuccess() .map (multiplyFracs))

.reduce (BigFraction: :add)
.doOnSuccess (displayResults)

.ignoreElement() ;

Applying Key Methods in the Observable Class to ex3

* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item
emitted by current Observable

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce-io.reactivex.rxjava3.functions.BiFunction-

Applying Key Methods in the Observable Class to ex3

* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item
emitted by current Observable

* The result of that function is then fed
along with the second item emitted by the
current Observable into the same function

10

Applying Key Methods in the Observable Class to ex3

* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item
emitted by current Observable

* The result of that function is then fed
along with the second item emitted by the
current Observable into the same function

» This continues until all items have been
emitted by the current & finite
Observable

11

Applying Key Methods in the Observable Class to ex3

* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item

emitted by current Observable ()
Maybe<T> { —9€~
« The final result is emitted from the final \ —|—>

call as the sole item of a Maybe

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

Applying Key Methods in the Observable Class to ex3
* The reduce() method Maybe<U> reduce

- Returns a Maybe that applies an (BiFunction<T, T, T> reducer)
accumulator function to the 1st item
emitted by current Observable

« The final result is emitted from the final
call as the sole item of a Maybe

« If there are no items emitted by the
Observable the Maybe will be empty

13

Applying Key Methods in the Observable Class to ex3

* The reduce() method

 This operator requires the upstream

to signal onComplete() before the
accumulator object can be emitted

0—0—0—

V ol AV aY

=

reduce{ (<> D) >§}

Y

-@

14

Applying Key Methods in the Observable Class to ex3

* The reduce() method O O O |

Y ¥ Y Wy

reduce{ (<> j) >§}

 This operator requires the upstream
to signal onComplete() before the
accumulator object can be emitted

« Sources that are infinite & never
complete will never emit anything
through this operator

« An infinite source may lead to a
fatal OutOfMemoryError

15

Applying Key Methods in the Observable Class to ex3

* The reduce() method

H i

reduce ((',Q) — O)
‘._,' i ;
* Project Reactor’s Flux.reduce() I >
method works the same U
See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce-java.util.function.BiFunction-

Applying Key Methods in the Observable Class to ex3

* The reduce() method

 Similar to the Stream.reduce()
method in Java Streams

reduce

Optional<T> reduce(BinaryOperator<T> accumulator)

Performs a reduction on the elements of this stream, using an associative
accumulation function, and returns an Optional describing the reduced
value, if any. This is equivalent to:

boolean foundAny = false;
T result = null;
for (T element : this stream) {
if (!foundAny) {
foundAny = true;
result = element;

}

else
result = accumulator.apply(result, element);

}
return foundAny ? Optional.of(result) : Optional.empty();

but is not constrained to execute sequentially.

The accumulator function must be an associative function.

This is a terminal operation.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-

Applying Key Methods in the Observable Class to ex3

« flatMap() is often used when each return Observable

item emitted by a stream needs to .fromIterable (bigFractions)
have its own threading operators
applied to it .flatMap(bf -> Observable
_ .just (bf)
* i.e., the “flatMap() concurrency _subscribeOn
idiom” (Schedulers

.computation())
.map (multiplyFracs))

.reduce (BigFraction: :add)
.doOnSuccess (displayResults)

.ignoreElement() ;

See www.nurkiewicz.com/2017/09/idiomatic-concurrency-flatmap-vs.html

http://www.nurkiewicz.com/2017/09/idiomatic-concurrency-flatmap-vs.html

Applying Key Methods in the Observable Class to ex3

« flatMap() is often used when each return Observable

item emitted by a stream needs to .fromIterable (bigFractions)
have its own threading operators
applied to it .flatMap (bf -> Observable

. “ . just (bf)
- e, the “flatMap() concurrency subscribeOn

idiom (Schedulers

.computation())
) .) . ltiplyF
Each instance of this inner chain map (multiplyFracs))

runs in a background thread in
the computation thread pool

.reduce (BigFraction: :add)

.doOnSuccess (displayResults)

.ignoreElement() ;

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

Applying Key Methods in the Observable Class to ex3

Bl rile Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help observable-ex3 - ObservableEx java [observable-ex3.main] - [u] X
ex3 src main java =€ ObservableEx =/ testFractionMultiplications1 “~ observable-ex3 ¥ > & G Git ¥ vV A = O Q
T Project Files v €@ = &» — @ BigFractionUtilsjava € ObservableExjava *
£ T s ~ v B
" Mimsinisicmdln * Use an asynchronous Observable stream and a pool of threads to -
v W java : ; : g o ; 9
2 v BN utils * perform BigFraction reductions and multiplications. &
5 B
:‘E_ € AsyncTester */
1 ‘© BigFraction = 2 - = = s
" ® b raciionutis @ public static CompletablefftestFractionMultiplications2()J{
= © HeapSort StringBuffer sb =
£ 1 2 5 B 2 z &
£ i new StringBuffer(">> Calling testFractionMultiplications2()\n");
O € ObservableEx
=]
S & main.iml
v g D:\Douglas Schmidt\Dropbox\Documet sb.append(" Printing sorted r\esults:");
3 > gradle
:‘,) > idea
< > I build // Process the function in a observable stream.
&
I > B gradle return Observable
src
S classpath // Emit a stream of random unreduced big fractions.
& gitignore .create(ObservableEx:: bigFractionEmitter)
S project
build.gradle
gradlew // Iterate thru the elements using RxJava's flatMap()
M gradiew.bat // concurrency idiom to reduce and multiply these
settings.gradle . 5
> I Extensions // fractions asynchronously in a thread pool.
.flatMap(unreducedFraction —
reduceAndMultiplyFraction(unreducedFraction,
Schedulers.computation()))
// Collect the results into an ArraylList.
3 .collectInto(new ArrayList<BigFraction>(), List::add)
f;' // Process the ArraylList and return a Completable that
K9Gt =T0D0 P 4Run O 6 Problems B Terminal o 7 ' Q Event Log
(]} 14531 CRLF UTF-8 4spaces P master

See github.com/douglascraigschmidt/Livel essons/tree/master/Reactive/Observable/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3

End of Applying Key Methods
in the Observable Class (Part 7)

21

