
Applying Key Methods in the

Observable Class (Part 4)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key methods in the

Observable class & how they are
applied in the case studies

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

3

Learning Objectives in this Part of the Lesson
• Case study ex3 shows how to

apply various RxJava operations
asynchronously to reduce &
multiply BigFraction objects

• e.g., fromIterable(), map(), create(),
flatMap(), flatMapCompletable(),
filter(), collectInto(), subscribeOn(),
onErrorReturn(), & Schedulers.
computation(), ambArray(), &
doOnSuccess()

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Observable/ex3

return Observable

.create(ObservableEx::bFEmitter)

.flatMap(unreducedFraction ->

reduceAndMultiplyFraction

(unreducedFraction,

Schedulers.computation()))

.collectInto(new ArrayList

<BigFraction>(), List::add)

.flatMapCompletable(list ->

BigFractionUtils

.sortAndPrintList(list,

sb));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3

4

Applying Key Methods in
the Observable Class to ex3

5

• testFractionExceptions()

• Use an asynchronous Observable
stream & a pool of threads to
showcase exception handling of
BigFraction objects

Applying Key Methods in the Observable Class to ex3

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

return Observable

.fromIterable(denominators)

.flatMap(denominator -> {

return Observable

.fromCallable(() -> ...))

.subscribeOn(...)

.onErrorReturn(...)

.map(multiplyBigFractions);

})

.filter(...)

.collectInto(...)

.flatMapCompletable

(list -> BigFractionUtils.

sortAndPrintList(list,

sb));

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

6

• testFractionExceptions()

• Use an asynchronous Observable
stream & a pool of threads to
showcase exception handling of
BigFraction objects

• Demonstrates Observable methods

• e.g., fromIterable(), create(),
fromCallable(), map(), flatMap(),
flatMapCompletable(), filter(),
collectInto(), subscribeOn(),
onErrorReturn(), & Schedulers.
computation()

Applying Key Methods in the Observable Class to ex2
return Observable

.fromIterable(denominators)

.flatMap(denominator -> {

return Observable

.fromCallable(() -> ...))

.subscribeOn(...)

.onErrorReturn(...)

.map(multiplyBigFractions);

})

.filter(...)

.collectInto(...)

.flatMapCompletable

(list -> BigFractionUtils.

sortAndPrintList(list,

sb));

7

• testFractionExceptions()

• Use an asynchronous Observable
stream & a pool of threads to
showcase exception handling of
BigFraction objects

• Demonstrates Observable methods

• Also demonstrates Single methods

• e.g., ambArray(), doOnSuccess(),
& ignoreElement()

Applying Key Methods in the Observable Class to ex2
return Single

.ambArray(quickSortS,

heapSortS)

.doOnSuccess(displayList)

.ignoreElement();

8

• The fromIterable() method

• Create an Observable that emits
the items contained in the given
Iterable

Applying Key Methods in the Observable Class to ex3
static <T> Observable<T>

fromIterable

(Iterable<? extends T> it)

9

• The fromIterable() method

• Create an Observable that emits
the items contained in the given
Iterable

• The Iterable.iterator() method will
be invoked at least once & at most
twice for each subscriber

Applying Key Methods in the Observable Class to ex3

See docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

static <T> Observable<T>

fromIterable

(Iterable<? extends T> it)

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

10

• The fromIterable() method

• Create an Observable that emits
the items contained in the given
Iterable

• This factory method adapts non-
reactive input sources into the
reactive model

• e.g., Java collections

Applying Key Methods in the Observable Class to ex3

See docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

List<Integer> denominators =

List.of(3, 4, 2, 0 1);

Observable

.fromIterable(denominators)

...

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

11

• The fromIterable() method

• Create an Observable that emits
the items contained in the given
Iterable

• This factory method adapts non-
reactive input sources into the
reactive model

• Project Reactor’s Flux.fromIterable()
method works the same

Applying Key Methods in the Observable Class to ex3

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#fromIterable

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#fromIterable-java.lang.Iterable-

12

• The fromIterable() method

• Create an Observable that emits
the items contained in the given
Iterable

• This factory method adapts non-
reactive input sources into the
reactive model

• Project Reactor’s Flux.fromIterable()
method works the same

• Similar to the Collection.stream()
method in Java Streams

Applying Key Methods in the Observable Class to ex3

See docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#stream--

13

• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

Applying Key Methods in the Observable Class to ex3

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMap

<R> Observable<R> flatMap

(Function

<? super T,

? extends ObservableSource

<? extends R>>

mapper)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMap-io.reactivex.rxjava3.functions.Function-

14

• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

• Items are emitted based on
applying a function to each item
emitted by this Observable

Applying Key Methods in the Observable Class to ex3
<R> Observable<R> flatMap

(Function

<? super T,

? extends ObservableSource

<? extends R>>

mapper)

15

• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

• Items are emitted based on
applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

Applying Key Methods in the Observable Class to ex3
<R> Observable<R> flatMap

(Function

<? super T,

? extends ObservableSource

<? extends R>>

mapper)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/ObservableSource.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/ObservableSource.html

16

• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

• Items are emitted based on
applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are emitted

Applying Key Methods in the Observable Class to ex3
<R> Observable<R> flatMap

(Function

<? super T,

? extends ObservableSource

<? extends R>>

mapper)

17

• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

• Items are emitted based on
applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are emitted

• They thus can interleave

Applying Key Methods in the Observable Class to ex3

18

Applying Key Methods in the Observable Class to ex3

The # of output elements may
differ from the # of input elements

• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

• Items are emitted based on
applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are emitted

• They thus can interleave

19

Applying Key Methods in the Observable Class to ex3
• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

• Items are emitted based on
applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are emitted

• They thus can interleave

flatMap() can transform the
type of elements it processes

20

• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

• Project Reactor’s Flux.flatMap()
method works the same way

Applying Key Methods in the Observable Class to ex3

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#flatMap

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#flatMap-java.util.function.Function-

21

• The flatMap() method

• Transform the elements emitted
by this Observable asynchronously

• Project Reactor’s Flux.flatMap()
method works the same way

• Similar to the Stream.flatMap()
method in Java Streams

Applying Key Methods in the Observable Class to ex3

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#flatMap

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#flatMap-java.util.function.Function-

22

• flatMap() is often used when each
item emitted by a stream needs to
have its own threading operators
applied to it

• i.e., the “flatMap() concurrency
idiom”

Applying Key Methods in the Observable Class to ex3

See www.nurkiewicz.com/2017/09/idiomatic-concurrency-flatmap-vs.html

Observable

.create(bigFractionEmitter)

.flatMap(unreduced ->

reduceAndMultiplyFraction

(unreduced, Schedulers

.computation()))

.collectInto(new

ArrayList<BigFraction>(),

List::add)

.flatMapCompletable(list ->

BigFractionUtils

.sortAndPrintList(list,sb));

http://www.nurkiewicz.com/2017/09/idiomatic-concurrency-flatmap-vs.html

23

• flatMap() doesn’t ensure the order
of the items in the resulting stream

Applying Key Methods in the Observable Class to ex3

24

• flatMap() doesn’t ensure the order
of the items in the resulting stream

• use concatMap() if order
matters

Applying Key Methods in the Observable Class to ex3

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#concatMap

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#concatMap-io.reactivex.rxjava3.functions.Function-

25

• The map() vs. flatMap() method

Applying Key Methods in the Observable Class to ex3

26

• The map() vs. flatMap() method

• The map() operator transforms
each value in a Observable stream
into a single value

• i.e., intended for synchronous, non-
blocking, 1-to-1 transformations

Applying Key Methods in the Observable Class to ex3

See medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

https://medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

27

• The map() vs. flatMap() method

• The map() operator transforms
each value in a Observable stream
into a single value

• The flatMap() operator transforms
each value in a Observable stream
into an arbitrary number (zero or
more) values

• i.e., intended for asynchronous
(often non-blocking) 1-to-N
transformations

Applying Key Methods in the Observable Class to ex3

See medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

https://medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

28

Applying Key Methods in the Observable Class to ex3
• The collectInto() method

• Collects items emitted by the
finite source Observable into a
single mutable data structure

Single<U> collectInto

(U initialItem,

BiConsumer<? super U, ? super T>

collector)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collectInto

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collectInto-U-io.reactivex.rxjava3.functions.BiConsumer-

29

Applying Key Methods in the Observable Class to ex3
• The collectInto() method

• Collects items emitted by the
finite source Observable into a
single mutable data structure

• The 1st param is the mutable
data structure that accumulates
(collects) the items

Single<U> collectInto

(U initialItem,

BiConsumer<? super U, ? super T>

collector)

...

.collectInto

(new ArrayList<BigFraction>(),

List::add)

...

30

Applying Key Methods in the Observable Class to ex3
• The collectInto() method

• Collects items emitted by the
finite source Observable into a
single mutable data structure

• The 1st param is the mutable
data structure that accumulates
(collects) the items

• The 2nd param is a bi-consumer
that accepts the accumulator &
an emitted item

• The accumulator is modified
accordingly

Single<U> collectInto

(U initialItem,

BiConsumer<? super U, ? super T>

collector)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiConsumer.html

...

.collectInto

(new ArrayList<BigFraction>(),

List::add)

...

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiConsumer.html

31

Applying Key Methods in the Observable Class to ex3
• The collectInto() method

• Collects items emitted by the
finite source Observable into a
single mutable data structure

• The 1st param is the mutable
data structure that accumulates
(collects) the items

• The 2nd param is a bi-consumer
that accepts the accumulator &
an emitted item

• Returns a Single that emits
this structure

Single<U> collectInto

(U initialItem,

BiConsumer<? super U, ? super T>

collector)

32

Applying Key Methods in the Observable Class to ex3
• The collectInto() method

• Collects items emitted by the
finite source Observable into a
single mutable data structure

• This method is a simplified
version of reduce() that does
not need to return the state
on each pass

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce-io.reactivex.rxjava3.functions.BiFunction-

33

Applying Key Methods in the Observable Class to ex3
• The collectInto() method

• Collects items emitted by the
finite source Observable into a
single mutable data structure

• This method is a simplified
version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
method works the same way

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect-java.util.function.Supplier-java.util.function.BiConsumer-

34

Applying Key Methods in the Observable Class to ex3
• The collectInto() method

• Collects items emitted by the
finite source Observable into a
single mutable data structure

• This method is a simplified
version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
method works the same way

• Flux.collectList() is an a more
concise (albeit limited) option

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collectList

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collectList--

35

Applying Key Methods in the Observable Class to ex3
• The collectInto() method

• Collects items emitted by the
finite source Observable into a
single mutable data structure

• This method is a simplified
version of reduce() that does
not need to return the state
on each pass

• Project Reactor’s Flux.collect()
method works the same

• Similar to the Stream.collect()
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.function.Supplier-java.util.function.BiConsumer-java.util.function.BiConsumer-

36

Applying Key Methods in the Observable Class to ex3
Completable flatMapCompletable

(Function<? super T,

? extends

CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMapCompletable

• The flatMapCompletable() method

• “flatMaps” an Observable into a
Completable

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMapCompletable-io.reactivex.rxjava3.functions.Function-

37

Applying Key Methods in the Observable Class to ex3
Completable flatMapCompletable

(Function<? super T,

? extends

CompletableSource>

mapper))

• The flatMapCompletable() method

• “flatMaps” an Observable into a
Completable, e.g.,

• Maps each element of the
current Observable into
CompletableSources

38

Applying Key Methods in the Observable Class to ex3
Completable flatMapCompletable

(Function<? super T,

? extends

CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/CompletableSource.html

• The flatMapCompletable() method

• “flatMaps” an Observable into a
Completable, e.g.,

• Maps each element of the
current Observable into
CompletableSources

• Subscribes to them & waits for
the completion of the upstream
& all CompletableSources

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/CompletableSource.html

39

Applying Key Methods in the Observable Class to ex3
Completable flatMapCompletable

(Function<? super T,

? extends

CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

• The flatMapCompletable() method

• “flatMaps” an Observable into a
Completable, e.g.,

• Maps each element of the
current Observable into
CompletableSources

• Subscribes to them & waits for
the completion of the upstream
& all CompletableSources

• Returns the new Completable
instance

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

40

Applying Key Methods in the Observable Class to ex3
• The flatMapCompletable() method

• “flatMaps” an Observable into a
Completable

• The Completable returned waits
for the upstream’s Observable
terminal event (onComplete())

See medium.com/@daniel.rodak/combining-rxjava2-completable-with-observable-6dda410a3c83

mailto:medium.com/@daniel.rodak/combining-rxjava2-completable-with-observable-6dda410a3c83

41

Applying Key Methods in the Observable Class to ex3
• The flatMapCompletable() method

• “flatMaps” an Observable into a
Completable

• The Completable returned waits
for the upstream’s Observable
terminal event (onComplete())

• Used to integrate with the
AsyncTester framework

See Reactive/Single/ex3/src/main/java/utils/AsyncTester.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Single/ex3/src/main/java/utils/AsyncTester.java

42

Applying Key Methods in the Observable Class to ex3
• The flatMapCompletable() method

• “flatMaps” an Observable into a
Completable

• The Completable returned waits
for the upstream’s Observable
terminal event (onComplete())

• Used to integrate with the
AsyncTester framework

• i.e., the Completable isn’t
triggered until all async
processing is finished

return Observable

.create(ObservableEx::bFEmitter)

.flatMap(unreducedFraction ->

reduceAndMultiplyFraction

(unreducedFraction,

Schedulers.computation()))

.collectInto(new ArrayList

<BigFraction>(), List::add)

.flatMapCompletable(list ->

BigFractionUtils

.sortAndPrintList(list,

sb));

See Reactive/Single/ex3/src/main/java/utils/AsyncTester.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Single/ex3/src/main/java/utils/AsyncTester.java

43

Applying Key Methods in
the Single Class to ex3

44

• The ambArray() method

• Runs multiple SingleSources &
signals the events of the first
one that signals

Applying Key Methods in the Single Class to ex3

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#ambArray

static <T> Single<T> ambArray

(SingleSource<? extends T>...

sources)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#ambArray-io.reactivex.rxjava3.core.SingleSource...-

45

• The ambArray() method

• Runs multiple SingleSources &
signals the events of the first
one that signals

• This method picks the fastest
of competing Single sources

Applying Key Methods in the Single Class to ex3
static <T> Single<T> ambArray

(SingleSource<? extends T>...

sources)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/SingleSource.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/SingleSource.html

46

• The ambArray() method

• Runs multiple SingleSources &
signals the events of the first
one that signals

• This method picks the fastest
of competing Single sources

• The rest are disposed of

Applying Key Methods in the Single Class to ex3

47

• The ambArray() method

• Runs multiple SingleSources &
signals the events of the first
one that signals

• This method picks the fastest
of competing Single sources

• Project Reactor’s method Mono.
firstWithSignal() works the same

Applying Key Methods in the Single Class to ex3

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#firstWithSignal

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#firstWithSignal-reactor.core.publisher.Mono...-

48

• The ambArray() method

• Runs multiple SingleSources &
signals the events of the first
one that signals

• This method picks the fastest
of competing Single sources

• Project Reactor’s method Mono.
firstWithSignal() works the same

• Similar to the Java Completable
Future.anyOf() method

Applying Key Methods in the Single Class to ex3

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#anyOf

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#anyOf-java.util.concurrent.CompletableFuture...-

49

• The ambArray() method

• Runs multiple SingleSources &
signals the events of the first
one that signals

• This method picks the fastest
of competing Single sources

• Project Reactor’s method Mono.
firstWithSignal() works the same

• Similar to the Java Completable
Future.anyOf() method

• Also a generalization of Completable
Future.applyToEither()

Applying Key Methods in the Single Class to ex3

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#applyToEither

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#applyToEither-java.util.concurrent.CompletionStage-java.util.function.Function-

50See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Observable/ex3

Applying Key Methods in the Observable Class to ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3

51

End of Applying Key Methods
in the Observable Class (Part 4)

