Applying Key Methods in the Single Class

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key methods in the Random random = new Random() ;
Single class & how they are _ _ _
applied in the case studies Single<BigFraction> ml =

makeBigFraction (random) ;
Single<BigFraction> m2 =
makeBigFraction (random) ;
- Case study ex3 return ml
.zipWith (m2,

return Single BigFraction: :add)

.Jjust (BigFractionUtils
.makeBigFraction(...)

.doOnSuccess
.multiply (sBigReducedFrac)) °

(mixedFractionPrinter)

.subscribeOn

.th ;
(Schedulers.parallel()) ; en ()

See github.com/douglascraigschmidt/LivelLessons/tree/master/Reactive/Single/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex3

Applying Key Methods in
the Single Class in ex3

Applying Key Methods in the Single Class in ex3

 ex3 shows how to apply RxJava Random random = new Random() ;
features asynchronously to perform _ _ _
various Single operations Single<BigFraction> ml =

_ makeBigFraction (random) ;
* €.g., subscribeOn(), doOnSuccess(), Single<BigFraction> m2 =

ignOreElement(), jUSt(), Z|pW|th(), & makeBigFraction (random) ;
Schedulers.computation()

_ return ml
return Single .zipWith (m2,
.Jjust (BigFractionUtils

.makeBigFraction(...)
.multiply (sReducedFrac))
.doOnSuccess (fractionPrinter)
.subscribeOn
(Schedulers.computation()) ;

BigFraction: :add)

.doOnSuccess
(mixedFractionPrinter)

.ignoreElement () ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/Reactive/Single/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex3

Applying Key Methods in the Single Class in ex3

 The just() method static <T> Single<T> just(T data)

» Create a new Single that emits
the specified item

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#just

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#just-T-

Applying Key Methods in the Single Class in ex3

 The just() method static <T> Single<T> just (T data)
» Create a new Single that emits
the specified item

 This value is captured at
instantiation time & is the value
returned for all subscribers

* i.e., it's “eager”

Applying Key Methods in the Single Class in ex3

* The just() method static <T> Single<T> fromCallable
(Callable<? extends T> supplier)

» Create a new Single that emits
the specified item

 In contrast, Single.fromCallable()
invokes the callable param at the
time of subscription & separately
for each subscriber

* i.e., it’s “lazy”

See reactivex.io/RxJava/3.x/iavadoc/io/reactivex/rxiava3/core/Single.htmI#fromCaIIabIe

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#fromCallable-java.util.concurrent.Callable-

Applying Key Methods in the Single Class in ex3

* The just() method 0
\ 4
 This factory method adapts ‘ just \
non-reactive input sources
into the reactive model V

Applying Key Methods in the Single Class in ex3

* The just() method

just (.

)
vy

 Project Reactor’s Mono.just()
works the same way

O >

See

brojectreactor.io/docs/core/release/a

Di/reactor/core/

publisher/Mono.html#just

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#just-T-

Applying Key Methods in the Single Class in ex3

» The zipWith() method <T2, O> Single<O>
+ Joins two results into a single zipWith (Single<? extends T2> other,

) BiFunction<? super T,
result after they both emit > super T2,

? extends O>
combinator)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#zipWith

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#zipWith-io.reactivex.rxjava3.core.SingleSource-io.reactivex.rxjava3.functions.BiFunction-

Applying Key Methods in the Single Class in ex3

» The zipWith() method <T2, O> Single<O>
+ Joins two results into a single zipWith (Single<? extends T2> other,

: BiFunction<? super T,
result after they both emit > super T2,

« Combine the result from ? extends O>
this & other Single into combinator)
another object via a given
combinator bifunction

Interface BiFunction<T1,T2,R>

Type Parameters:
T1 - the first value type
T2 - the second value type
R - the result type

Functional Interface:

This is a functional interface and can therefore be used as the

assignment target for a lambda expression or method reference.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

Applying Key Methods in the Single Class in ex3

» The zipWith() method

« Joins two results into a single
result after they both emit

« Combine the result from
this & other Single into

:
.

|
Ui
: 4 /":\\
l | ﬁﬂ— -— ‘ (:::/a
| N\, - 4

|
|
|
]

v

L

subscribe()
subscribe)

I
|
|
I
|
|

|
]
v

subscribe()
subscribe()

—7‘_____
e

'e .
@ » | dispose()

another object via a given zipWith(<D= , (@D.@)~»
combinator bifunction .

A
i

subscribe()

subscribe()
S

zZipWith() can transform the
type of elements it processes

v

Applying Key Methods in the Single Class in ex3

» The zipWith() method

 Project Reactor’s Mono

.ZipWith() works the same

.

>
vy vV
zipwith (O,[Hh—)
vy

O

See

projectreactor.io/docs/core/release/a

ni/reactor/core/

publisher/Single.html#zi

pWith

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#zipWith-reactor.core.publisher.Mono-java.util.function.BiFunction-

Applying Key Methods in the Single Class in ex3

» The zipWith() method

« Similar to the Java Completable
Future.thenCombine() method

thenCombine

public <U,V> CompletableFuture<V> thenCombine(CompletionStage<? extends U> other,
BiFunction<? super T,? super U,? extends V> fn)

Description copied from interface: CompletionStage

Returns a new CompletionStage that, when this and the other given stage both complete normally, is
executed with the two results as arguments to the supplied function. See the CompletionStage
documentation for rules covering exceptional completion.

Specified by:
thenCombine in interface CompletionStage<T>

Type Parameters:

U - the type of the other CompletionStage's result

V - the function's return type
Parameters:

other - the other CompletionStage

fn - the function to use to compute the value of the returned CompletionStage

Returns:

the new CompletionStage

See docs.orade.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.htmi#thenCombine

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenCombine-java.util.concurrent.CompletionStage-java.util.function.BiFunction-

Applying Key Methods in the Single Class in ex3

« The Schedulers.computation() static Scheduler computation/ ()
method

« Hosts a fixed pool of single-threaded
Executor Service-based workers that
is suitable for parallel work

See readivex.io/RxJava/3.x/javadod/io/readivex/njava3/schedulers/Schedulers.html#computation

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#computation--

Applying Key Methods in the Single Class in ex3

» The Schedulers.computation()
method .
java.lang.Object

« Hosts a fixed pOOI of Single_threaded io.reactivex.rxjava3.schedulers.Schedulers
Executor Service-based workers that o
|S SU|tab|e for para”el WOI‘k zz:i;;sfégiicilass Schedulers

L Optl m |Zed for fa St runn | ng non- Static factory methods for returning standard Scheduler instances.
b|OC kl ng Ope ratIOnS The initial and runtime values of the various scheduler types can be

overridden via the RxJavaPlugins.setInit(scheduler

° i.e., Computat|0n'|nten5|ve not name)SchedulerHandler() and RxJavaPlugins.set(scheduler
I/o_lntenSIVel name)SchedulerHandler() respectively.

Class Schedulers

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

Applying Key Methods in the Single Class in ex3

» The Schedulers.computation()
method

« Hosts a fixed pool of single-threaded
Executor Service-based workers that
is suitable for parallel work

« Implemented via daemon threads
that won't prevent the app from
exiting even if its work isn't done

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

Applying Key Methods in the Single Class in ex3

 The Schedulers.computation() _—

method

public static parallel()
that hosts a fixed pool of single-threaded

ExecutorService-based workers and is suited for parallel
work.

» Project Reactor’s Schedulers. Returns:

. I default instance of a that hosts a fixed pool of
pa ra”el() methOd IS Slmllar single-threaded ExecutorService-based workers and is suited

for parallel work

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel--

Applying Key Methods in the Single Class in ex3

] File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help ingle-ex3 - SingleEx.java [single-ex3.main, - (w) X
ex3 src . main java = € SingleEx = M makeBigFraction “ single-ex3 v b & G Gt W VA ® 0Q
g Project Files + @B = & — @ singlekxjava *
2 ¢ i - q T z
5 Visingle-ex3 import ... 3A v|3
- ~ g main src/main »
v java Q
g > I utils S
g e i 2
& > :“IE * This class shows how to apply Project Reactor features
1<) ingleEx 3 z
i malhidm * asynchronously and concurrently reduce, multiply, and display
& ma 4 L
@ > %5 DA\Douglas Schmidt\Dropbox\Documents' * BigFractions via various Mono operations, including fromCallable(),
g > Extensions " o ,
8 * subscribeOn(), zipWith(), doOnSuccess(), ambArray(),
;' * ignoreElement(), and the parallel thread pool.
s */
é, public class SingleEx {
&
2 /1
"‘ Test asynchronous BigFraction multiplication and addition using
* zipWith().
*/
@ public static Completable testFractionCombine() {
StringBuffer sb =
new StringBuffer(">> Calling testFractionCombine()\n");

// A random number generator.

Random random = new Random();

// Create a random BigFraction and reduce/multiply it

// asynchronously.
f Single<BigFraction> ml = makeBigFraction(random, sb);
5
* // Create another random BigFraction and reduce/multiply it

K oGt =TODO P 4Run O 6 Problems B Terminal N Build Q) event Log

=) 91:52 CRLF UTF-8 4spaces } master

See github.com/dougIascraigschmidt/LiveLessons/tree/master/Reactive/SingIe/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/mono/ex3

End of Applying Key
Methods in the Single Class
(Part 3)

20

