
Applying Key Methods in the Single Class

(Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key methods in the

Single class & how they are
applied in the case studies

• Case study ex1

• Case study ex2

• Case study ex3

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex3

Random random = new Random();

Single<BigFraction> m1 =

makeBigFraction(random);

Single<BigFraction> m2 =

makeBigFraction(random);

return m1

.zipWith(m2,

BigFraction::add)

.doOnSuccess

(mixedFractionPrinter)

.then();

return Single

.just(BigFractionUtils

.makeBigFraction(...)

.multiply(sBigReducedFrac))

.subscribeOn

(Schedulers.parallel());

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex3

3

Applying Key Methods in
the Single Class in ex3

4See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex3

• ex3 shows how to apply RxJava
features asynchronously to perform
various Single operations

• e.g., subscribeOn(), doOnSuccess(),
ignoreElement(), just(), zipWith(), &
Schedulers.computation()

Applying Key Methods in the Single Class in ex3
Random random = new Random();

Single<BigFraction> m1 =

makeBigFraction(random);

Single<BigFraction> m2 =

makeBigFraction(random);

return m1

.zipWith(m2,

BigFraction::add)

.doOnSuccess

(mixedFractionPrinter)

.ignoreElement();

return Single

.just(BigFractionUtils

.makeBigFraction(...)

.multiply(sReducedFrac))

.doOnSuccess(fractionPrinter)

.subscribeOn

(Schedulers.computation());

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex3

5

• The just() method

• Create a new Single that emits
the specified item

Applying Key Methods in the Single Class in ex3

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#just

static <T> Single<T> just(T data)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#just-T-

6

• The just() method

• Create a new Single that emits
the specified item

• This value is captured at
instantiation time & is the value
returned for all subscribers

• i.e., it’s “eager”

Applying Key Methods in the Single Class in ex3
static <T> Single<T> just(T data)

7

static <T> Single<T> fromCallable

(Callable<? extends T> supplier)
• The just() method

• Create a new Single that emits
the specified item

• This value is captured at
instantiation time & is the value
returned for all subscribers

• In contrast, Single.fromCallable()
invokes the callable param at the
time of subscription & separately
for each subscriber

• i.e., it’s “lazy”

Applying Key Methods in the Single Class in ex3

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#fromCallable

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#fromCallable-java.util.concurrent.Callable-

8

• The just() method

• Create a new Single that emits
the specified item

• This factory method adapts
non-reactive input sources
into the reactive model

Applying Key Methods in the Single Class in ex3

9

• The just() method

• Create a new Single that emits
the specified item

• This factory method adapts
non-reactive input sources
into the reactive model

• Project Reactor’s Mono.just()
works the same way

Applying Key Methods in the Single Class in ex3

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#just

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#just-T-

10

• The zipWith() method

• Joins two results into a single
result after they both emit

Applying Key Methods in the Single Class in ex3
<T2, O> Single<O>

zipWith(Single<? extends T2> other,

BiFunction<? super T,

? super T2,

? extends O>

combinator)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#zipWith

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#zipWith-io.reactivex.rxjava3.core.SingleSource-io.reactivex.rxjava3.functions.BiFunction-

11

• The zipWith() method

• Joins two results into a single
result after they both emit

• Combine the result from
this & other Single into
another object via a given
combinator bifunction

Applying Key Methods in the Single Class in ex3
<T2, O> Single<O>

zipWith(Single<? extends T2> other,

BiFunction<? super T,

? super T2,

? extends O>

combinator)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

12

• The zipWith() method

• Joins two results into a single
result after they both emit

• Combine the result from
this & other Single into
another object via a given
combinator bifunction

Applying Key Methods in the Single Class in ex3

zipWith() can transform the
type of elements it processes

13

• The zipWith() method

• Joins two results into a single
result after they both emit

• Project Reactor’s Mono
.zipWith() works the same

Applying Key Methods in the Single Class in ex3

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Single.html#zipWith

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#zipWith-reactor.core.publisher.Mono-java.util.function.BiFunction-

14

• The zipWith() method

• Joins two results into a single
result after they both emit

• Project Reactor’s Mono
.zipWith() works the same

• Similar to the Java Completable
Future.thenCombine() method

Applying Key Methods in the Single Class in ex3

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenCombine

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenCombine-java.util.concurrent.CompletionStage-java.util.function.BiFunction-

15See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#computation

• The Schedulers.computation()
method

• Hosts a fixed pool of single-threaded
Executor Service-based workers that
is suitable for parallel work

Applying Key Methods in the Single Class in ex3
static Scheduler computation()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#computation--

16See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

• The Schedulers.computation()
method

• Hosts a fixed pool of single-threaded
Executor Service-based workers that
is suitable for parallel work

• Optimized for fast running non-
blocking operations

• i.e., computation-intensive not
I/O-intensive!

Applying Key Methods in the Single Class in ex3

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

17

• The Schedulers.computation()
method

• Hosts a fixed pool of single-threaded
Executor Service-based workers that
is suitable for parallel work

• Optimized for fast running non-
blocking operations

• Implemented via daemon threads
that won’t prevent the app from
exiting even if its work isn’t done

Applying Key Methods in the Single Class in ex3

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

18

• The Schedulers.computation()
method

• Hosts a fixed pool of single-threaded
Executor Service-based workers that
is suitable for parallel work

• Project Reactor’s Schedulers.
parallel() method is similar

Applying Key Methods in the Single Class in ex3

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel--

19

Applying Key Methods in the Single Class in ex3

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/mono/ex3

20

End of Applying Key
Methods in the Single Class

(Part 3)

