Applying Key Methods in the Single Class

(Part 1)

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key methods in the
Single class & how they are
applied in the case studies

Class Single<T>

java.lang.Object
io.reactivex.rxjava3.core.Single<T>

Type Parameters:
T - the type of the item emitted by the Single

All Implemented Interfaces:
SingleSource<T>

Direct Known Subclasses:
SingleSubject

public abstract class Single<T»>
extends Object
implements SingleSource<T>

The Single class implements the Reactive Pattern for a single value response.

Single behaves similarly to Observable except that it can only emit either a single successful value
or an error (there is no onComplete notification as there is for an Observable).

The Single class implements the SingleSource base interface and the default consumer type it
interacts with is the SingleObserver via the subscribe(SingleObserver) method.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

Learning Objectives in this Part of the Lesson

« Recognize key methods in the return Single
Single class & how they are .fromCallable (reduceFraction)

applied in the case studies
 Case study ex1

.map (convertToMixedString)
.doOnSuccess (printResult)

.ignoreElement () ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/Reactive/Single/ex1

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex1

Applying Key Methods in
the Single Class to ex1

Applying Key Methods in the Single Class to ex1

» ex1 shows how to apply RxJava return Single
features synchronously to perform -fromCallable(reduceFraction)

basic Single operations _ _
.map (convertToMixedString)
 e.g., fromCallable(), doOnSuccess(),

ignoreElement(), & map() .doOnSuccess (printResult)

.ignoreElement () ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/Reactive/Single/ex1

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex1

Applying Key Methods in the Single Class to ex1

« The fromCallable() method static <T> Single<T> fromCallable
(Callable<? extends T> supplier)

 This factory method creates &
returns a Single of type T

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#fromCallable

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#fromCallable-java.util.concurrent.Callable-

Applying Key Methods in the Single Class to ex1

« The fromCallable() method static <T> Single<T> fromCallable
. This factory method creates & (Callable<? extends T> supplier)

returns a Single of type T Interface Callable<V>
» The Single’s value is produced via
the provided Callable supplier Type Parameters:

V - the result type of method call

All Known Subinterfaces:

DocumentationTool.DocumentationTask,
JavaCompiler.CompilationTask

Functional Interface:

This is a functional interface and can
therefore be used as the assignment target for
a lambda expression or method reference.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

Applying Key Methods in the Single Class to ex1

« The fromCallable() method static <T> Single<T> fromCallable

: Callable<? extends T> supplier
- This factory method creates & (pplier)

returns a Single of type T

« The Single’s value is produced via
the provided Callable supplier

* The callable is invoked at the
time of subscription & also for
each subscriber

* i.e, it's “lazy”

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Callable.html

Applying Key Methods in the Single Class to ex1

« The fromCallable() method
(Callable ={ QB (Callable ={ XB

« This factory method adapts non- ! ¥
reactive input sources into the fromCallable

reactive model

Applying Key Methods in the Single Class to ex1

« The fromCallable() method

fromCallable () — {@)})

{ @}

vy

» Project Reactor’s Mono.fromCallable()

method works the same way

See projectreactor.io/docs/core/release/a

vi/reactor/core/

publisher/Mono.html#fromCallable

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#fromCallable-java.util.concurrent.Callable-

Applying Key Methods in the Single Class to ex1

« The map() method <R> Single<R>
. . Function<? T ? extends R>
« Transform the item emitted map (Function<? super extenas

by this Single mapper)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#map

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#map-io.reactivex.rxjava3.functions.Function-

Applying Key Methods in the Single Class to ex1

« The map() method <R> Single<R>
. Transform the item emitted map (Function<? super T,? extends R>
- mapper)
by this Single P

* Applies d SynChronous function Interface Function<T,R>
to transform the item

Type Parameters:

T - the type of the input to the function
R - the type of the result of the function

All Known Subinterfaces:

UnaryOperator<T>

Functional Interface:

This is a functional interface and can
therefore be used as the assignment target for
a lambda expression or method reference.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Function.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Function.html

Applying Key Methods in the Single Class to ex1

« The map() method 'O

« Transform the item emitted
A4
‘ map {O - ><>} \

by this Single
« map() can transform the type /
of elements it processes »O

Applying Key Methods in the Single Class to ex1

« The map() method

Project Reactor’s Mono.map()
method works the same way

.
v v
map ((O)—[])
v oy

See

projectreactor.io/docs/core/release/a

pi/reactor/core/

publisher/Single.html#ma

D

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#map-java.util.function.Function-

Applying Key Methods in the Single Class to ex1

« The map() method

 Similar to Java Completable
Future.thenApply() method

thenApply

public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn)

Description copied from interface: CompletionStage

Returns a new CompletionStage that, when this stage completes normally, is executed
with this stage's result as the argument to the supplied function. See the
CompletionStage documentation for rules covering exceptional completion.

Specified by:

thenApply in interface CompletionStage<T>

Type Parameters:

U - the function's return type

Parameters:

fn - the function to use to compute the value of the returned CompletionStage
Returns:

the new CompletionStage

See docs.orade.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.htmi#thenApply

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenApply-java.util.function.Function-

Applying Key Methods in the Single Class to ex1
« The doOnSuccess() method Single<T> doOnSuccess

- Add a behavior triggered when (Consumer<? super T>
- onSuccess)
the Single completes successfully

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#doOnSuccess

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#doOnSuccess-io.reactivex.rxjava3.functions.Consumer-

Applying Key Methods in the Single Class to ex1

« The doOnSuccess() method Single<T> doOnSuccess
- Add a behavior triggered when (Consumer<? super T>

. onSuccess)
the Single completes successfully
* The behavior is passed as a Interface Consumer<T>
consumer param that’s called Hvpe Parametere
on SUCCGSSfUI Completion T - the type of the input to the operation

All Known Subinterfaces:

Stream.Builder<T>

Functional Interface:

This is a functional interface and can
therefore be used as the assignment target for
a lambda expression or method reference.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Consumer.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Consumer.html

Applying Key Methods in the Single Class to ex1

* The doOnSuccess() method |
. | >
* The actual value emitted by
doOnSuccess() is not modified doOnSuccess (O _"@)

% 1.

18

Applying Key Methods in the Single Class to ex1

« The doOnSuccess() method >O
Y
doOnSuccess(ﬁ) |
 Project Reactor’s method !
Mono.doOnSuccess() works oy

the same way ’O

See projectreactorio/docs/core/release/api/reactor/core/publisher/Single.html#doOnSuccess

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#doOnSuccess-java.util.function.Consumer-

Applying Key Methods in the Single Class to ex1

* The doOnSuccess() method

« Similar to the Java Completable
Future.thenAccept() method

thenAccept

public CompletableFuture<Void> thenAccept(Consumer<? super T> action)

Description copied from interface: CompletionStage

Returns a new CompletionStage that, when this stage completes normally, is
executed with this stage's result as the argument to the supplied action. See the
CompletionStage documentation for rules covering exceptional completion.

Specified by:
thenAccept in interface CompletionStage<T>

Parameters:

action - the action to perform before completing the returned
CompletionStage

Returns:

the new CompletionStage

See docs.orade.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenAccept

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenAccept-java.util.function.Consumer-

Applying Key Methods in the Single Class to ex1
« The ignoreElement() method Completable ignoreElement ()

« Returns a Completable that ignores
the success value of this Single &
signals onComplete() instead

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#ignoreElement

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html#ignoreElement--

Applying Key Methods in the Single Class to ex1

* The ignoreElement() method C x
>
v !

+ This “data-suppressing” operator ignoreElement()

ignores its payload

It can be used to indicate when i i
an async operation completes | v
> x

>

22

Applying Key Methods in the Single Class to ex1

* The ignoreElement() method

* ignoreElement() returns a
Completable value

« Completable represents a
deferred computation without
any value, but only indicates
completion or exception

Class Completable

java.lang.Object
io.reactivex.rxjava3.core.Completable

All Implemented Interfaces:
CompletableSource

Direct Known Subclasses:
CompletableSubject

public abstract class Completable
extends Object
implements CompletableSource

The Completable class represents a deferred computation without any value but only
indication for completion or exception.

Completable behaves similarly to Observable except that it can only emit either a completion

or error signal (there is no onNext or onSuccess as with the other reactive types).

The Completable class implements the CompletableSource base interface and the default
consumer type it interacts with is the CompletableObserver via the
subscribe(CompletableObserver) method. The Completable operates with the following
sequential protocol:

onSubscribe (onError | onComplete)?

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

Applying Key Methods in the Single Class to ex1

* The ignoreElement() method

« ignoreElement() is needed for
the AsyncTester framework

« Ensures an async computation
doesn’t complete prematurely

Class AsyncTester

java.lang.Object
utils.AsyncTester

public class AsyncTester
extends java.lang.Object

This class asynchronously runs tests that use the RxJava framework and ensures that the

test driver doesn't exit until all the asynchronous processing is completed.

Method Summary
GV EGEEE) Static Methods | Concrete Methods
Modifier and Type Method

static void register

(io.reactivex.rxjava3.

static runTests()

io.reactivex.rxjava3.core.Single<java.lang.Long>

See Reactive/Single/ex1/src/main/java/utils/AsyncTester.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Single/ex1/src/main/java/utils/AsyncTester.java

Applying Key Methods in the Single Class to ex1

* The ignoreElement() method

Project Reactor’s Mono.then()
method works in a similar way

o

\ A / Y

then

See

brojectreactor.io/docs/core/release/a

Di/reactor/core/

hublisher/Single.html#then

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html#then--

Applying Key Methods in the Slngle Class to ex1

Bl File Edit View Navigate Code Analyze Refactor Build Run Iools VCS Window Help single-ex1 - SingleExjava [single a = O X
ex1 src main java € SingleEx ~ single-ex1 ¥ | - 1S Git ¥ v A 9 Kk B0Q
3 Project Files D = © — @ singletxjava F 3
g hd single-ex1 P z
o 1 5ing) /¢4. 4 v o=
- ¥ U main src/mair) -~
v I java *# This class shows how to apply Project Reactor features @
.’% ~ G utils * synchronously to to reduce and display BigFractions via s
g > utils i i . .
% ® AsyncTester * basic Mono operations, including fromCallable(), map(),
- © BigFraction * doOnSuccess(), and then()
- € BigFractionUtils .
E C' 77/
E ex1 A N
S € Singlefx public class |51ngleEx 1l
_;I & main.iml /:-T +*
> [ig D:\Douglas Schmidt\Dropbox\Do
g > Extensions * Test synchronous BigFraction reduction using a mono and a
ni: * pipeline of operations that run on the calling thread.
= */
]
@ public static Completable testFractionReductionSyncl() {
StringBuilder sh =
new StringBuilder(">> Calling testFractionReductionSyncl()\n");

// Create a new unreduced big fraction.

BigFraction unreducedFraction = BigFraction
3 .valueOf(new BigInteger(sBI1),
B new BigInteger(sBIZ2),
& reduce: false);

K 9Git := TODO © & Problems B Terminal Q) Event Log

O 20:14 CRLF UTF-8 4spaces P master ia

See github.com/dougIascraigschmidt/LiveLessons/tree/master/Reactive/SingIe/exl

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single/ex1

End of Applying Key
Methods in the Single Class
(Part 1)

27

