Douglas C. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Evaluate the cons of using the Java completable futures framework

Learning Objectives in this Part of the Lesson

 Evaluate the cons of using the Java completable futures framework
« Again, we evaluate the Java completable futures framework compared

with the parallel streams framework Completable Futures
Parallel Streams HELEEA -

HEEEEME [I

L < 1 < Ho< i< :

i—% {u}—é ¥ =5 ¥ +§ i map(this::checkUrICachedAsync)

1| filter(not(this::urlCached)) : G

1 T T 1 Ho0

i @ ” ” i map(t@downloadImageAsync)

i| map(this::downloadimage) i _ _

i 1 1 ! flatMap(this::applyFiltersAsync)

RV ys

1 . . 1

E fIatMap(thls::at;.)plyFllteIs) i collect{toFuture())

LV <

i collect(tolist()) |i thenAccept(this::logResults)

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Cons of the Java Completable
Futures Framework

Cons of the Java Completable Futures Framework
It's easier to program Java parallel streams than completable futures

void processStream() ({ void processStream() ({
List<URL> urls = getInput() List<URL> urls = getInput()

List<Image> images =

urls

.parallelStream()

.filter (not (this: :urlCached))
.map (this: :blockingDownload)
.flatMap (this: :applyFilters)
.collect(toList()) ;

CompletableFuture<Stream<Image>>
resultsFuture = urls

.stream/()

.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)
.flatMap (this: :applyFiltersAsync)
.collect (toFuture())

.thenApply (this: :logResults)

logResults (images) ; join () ;

Cons of the Java Completable Futures Framework

It's easier to program Java parallel streams than completable futures
» The overall control flow is similar when using the Java streams framework

void processStream() ({ void processStream() ({
List<URL> urls = getInput() List<URL> urls = getInput()

List<Image> images =
urls
.parallelStream()

.filterfnot(thisi:urlCached)) .map (this: :checkUrlCachedAsync)
.map (this: :blockingDownload)

_ _ .map (this: :downloadImageAsync)
.flatMap(th1§::applyFllters) .flatMap (this: :applyFiltersAsync)
-collect(tolist()); .collect (toFuture())
.thenApply (this: :logResults)
.join() ;

CompletableFuture<Stream<Image>>
resultsFuture = urls
.stream/()

logResults (images) ;

Cons of the Java Completable Futures Framework
It's easier to program Java parallel streams than completable futures

« However, async behaviors are more complicated than the sync behaviors!

void processStream() ({ void processStream() ({
List<URL> urls = getInput() List<URL> urls = getInput()

List<Image> images =

urls

.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
.flatMap (this: :applyFilters)
.collect(toList()) ;

CompletableFuture<Stream<Image>>
resultsFuture = urls

.stream/()

.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)
.flatMap (this: :applyFiltersAsync)
.collect (toFuture())

.thenApply (this: :logResults)

logResults (images) ; join () ;

Cons of the Java Completable Futures Framework

» There's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks

Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL_STREAM executed in 428 msecs
SEQUENTIAL_STREAM executed in 981 msecs

Productivity

Performance

Printing 4 results for input file 2 from fastest to slowest

COMPLETABLE_FUTURES_2 executed in 82 msecs v
COMPLETABLE_FUTURES _1 executed in 83 msecs
PARALLEL_STREAM executed in 102 msecs

SEQUENTIAL_STREAM executed in 251 msecs

Cons of the Java Completable Futures Framework

» There's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks, e.g.

« Completable futures are more efficient
& scalable, but are harder to program

COMPLETABLE_FUTURES 1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL _ STREAM executed in 428 msecs

[/ REAV ote

Productivity

Performance

COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES 1 executed in 83 msecs
PARALLEL STREAM executed in 102 msecs

Cons of the Java Completable Futures Framework

» There's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks, e.g.

« Completable futures are more efficient
& scalable, but are harder to program

« Asynchrony patterns aren’t generally
well understood by developers

=’)ava

= CompletableFuture for Asynchronous
Programming in Java 8

Created by Yolande Poirier-Oracle on Mar 7, 2016 11:57 PM. Last modified by SteveOnJava-Oracle on Oct 21, 2016
7:30 PM

by José Paumard

New, elegant ways to process data asynchronously

JJava SE 8 brought so many new things to the Java platform that some of them have probably been left in the shadows
Not all applications are using the java.util.concurrent package, even though the primitives provided in this

package are extremely useful for writing correct concurrent code

This package saw several very nice additions in Java 8. The ones we discuss in this article are the CompletionStage

interface and the CompletableFuture implementing class. Along with the Future interface,

patterns for building asynchronous systems|

Problem Statement

Let's start with the following piece of code. This is not meant to be Java code, but merely metalanguage code. We do
not care about which API provides the methods written here nor about the classes used

o1 queryEngine.select("select user from User user")
02, .forEach(user -> System.out.println(user));

e have here a query engine that launches a Java Persistence Query Language (JPQL) type of request on a
[database. Once we have the result of this query, we would like to simply print the result. The querying of the database
might be slow, so we would like to execute this code in a separate thread and trigger the printing of the result when it is

See community.oracle.com/docs/DOC-995305

https://community.oracle.com/docs/DOC-995305

Cons of the Java Completable Futures Framework

» There's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks, e.q.

« Parallel streams are easier to program,
but are less efficient & scalable

Performance

Productivity

11

Cons of the Java Completable Futures Framework

» There's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks, e.g.

« Parallel streams are easier to program,
but are less efficient & scalable

« Use sequential streams for initial
development & then trivially make
them parallel!

List<List<SearchResults>>
processStream() {
return getInput ()
.stream()
.map (this: :processInput)
.collect(toList()) ;

}

List<List<SearchResults>>
processStream() {
return getInput ()
.parallelStream()
.map (this: :processInput)
.collect(toList()) ;

Converting sequential to parallel streams only require minuscule changes!

Cons of the Java Completable Futures Framework

» As usual, it is essential to know the best practices & patterns needed to
program completable futures effectively!

Initiator Proactor
L ™ \
N \
o yses \
I Y 1
! 15,[3 s Asynchronous Asynchronous |
/ 1 Operation Processor Event Demultiplexer | !
f 1 7 3 7 !
! 1 s ~ ! /
breates ’ executes \, enqueues ‘dequeues o emultmlexes
[\ s N J ; & dispatches - =
1 Y « » / Performance Productivity
\ Fa
\ Asynchronous Completion s
\ Operation Event Queue p “
\ l P
\ = -
4 a-- " 7
Completion
Handler

13

End of Evaluating the Cons
of the Java Completable
Futures Framework

14

