Features: Two Stage Gompletion Methods (Part 2}

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

oo

Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand advanced features Completion stage methods
of completable futures, e.qg.

« Completion stage methods chain
together actions to perform async
result processing & composition

Exception
methods

Factory

Arbitrary-arity methods

« Two stage methods (or) methods

Basic methods




Methods Triggered by
Completion of Two Stages




Methods Triggered by Completion of Either of Two Stages

- Methods triggered by completion CompletableFuture<Void> acceptEither
of either of two previous stages =~ (CompletionStage<? Extends T>

_ other,
» acceptEither() Consumer<? super T> action)

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#acceptEither



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#acceptEither-java.util.concurrent.CompletionStage-java.util.function.Consumer-

Methods Triggered by Completion of Either of Two Stages

Methods triggered by completion CompletableFuture<Void> acceptEither
of either of two previous stages =~ (CompletionStage<? Extends T>

_ other,
» acceptEither() Consumer<? super T> action)

» Applies a consumer action { ...}
that handles either of the
previous stages' results

See en.wikipedia.org/wiki/Logical disjunction



https://en.wikipedia.org/wiki/Logical_disjunction

Methods Triggered by Completion of Either of Two Stages

Methods triggered by completion CompletableFuture<Void> acceptEither

of either of two previous stages =~ (CompletionStage<? Extends T>
. other,
* acceptElther() Consumer<? super T> action)
» Applies a consumer action { ...}
that handles either of the

previous stages' results
« Two futures are used here:
« The future used to invoke acceptEither()
« The "other’ future passed to acceptEither()

See en.wikipedia.org/wiki/Logical disjunction



https://en.wikipedia.org/wiki/Logical_disjunction

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<Void> acceptEither
of either of two previous stages =~ (CompletionStage<? Extends T>

_ other,
» acceptEither() Consumer<? super T> action)

{ ...}

e Returns a future to Void

See www.baeldung.com/java-void-type



http://www.baeldung.com/java-void-type

Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<BigFraction>>
of either of two previous stages quickSortF = CompletableFuture

) .supplyAsync(() ->
« acceptEither() quickSort(list));

CompletableFuture<List<BigFraction>>
mergeSortF = CompletableFuture
.supplyAsync (/() ->
mergeSort (list)) ;

« Often used at the end of a /

chain of completion stages Create two completable futures
that will contain the results of

sorting the list using two different

algorithms in two different threads




Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<BigFraction>>
of either of two previous stages quickSortF = CompletableFuture

_ .supplyAsync(() ->
« acceptEither() quickSort(list)) ;

CompletableFuture<List<BigFraction>>
mergeSortF = CompletableFuture
.supplyAsync(() ->
mergeSort (list)) ;

« Often used at the end of a

chain of completion stages =~ quickSortE.acceptiither

(mergeSortF, results -> results
.forEach (fraction ->

This method is invoked when either System.out.println

quickSortF or mergeSortF complete (fraction
.toMixedString()))) ;




Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<BigFraction>>
of either of two previous stages quickSortF = CompletableFuture

_ .supplyAsync(() ->
« acceptEither() quickSort(list)) ;

CompletableFuture<List<BigFraction>>
mergeSortF = CompletableFuture
.supplyAsync(() ->
mergeSort (list)) ;

« Often used at the end of a

chain of completion stages = IuickSortF.acceptEither

(mergeSortF, results -> results
.forEach (fraction ->

Printout sorted results from which | —— System.out.println

ever sorting routine finished first (fraction

.toMixedString())))

10



Methods Triggered by Completion of Either of Two Stages

« Methods triggered by completion CompletableFuture<List<BigFraction>>
of either of two previous stages quickSortF = Compladle N

: 1yA
« acceptEither() suppLyAsync {4

CompletableFuturf e
mergeSortF = C|
.supplyAsync ¥

« Often used at the end of a

chain of completion stages ~ quickSortF.acceptEither

(mergeSortF, results -> results
.forEach (fraction ->
System.out.println
(fraction
.toMixedString()))) ;

acceptEither() does not cancel the second future after the first one completes




End of Understand Advanced
Java CompletableFuture

Features: Two Stage
Completion Methods (Part 2)

12



