Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

s
T

Nashuille, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand advanced features Completion stage methods
of completable futures, e.qg.

« Completion stage methods chain
together actions to perform async
result processing & composition

Exception
methods

Factory
Arbitrary-arity methods

methods

Basic methods

Completion Stage Methods
Chain Actions Together

Completion Stage Methods Chain Actions Together

c A completable future can Interface CompletionStage<T>
serve as a "completion stage”| | |
. nown Implementing Classes:
for async result processing | comtetasteruture

public interface CompletionStage<T>

A stage of a possibly asynchronous computation, that performs an action or computes a
value when another CompletionStage completes. A stage completes upon termination of
its computation, but this may in turn trigger other dependent stages. The functionality
defined in this interface takes only a few basic forms, which expand out to a larger set of
methods to capture a range of usage styles:

« The computation performed by a stage may be expressed as a Function, Consumer,
or Runnable (using methods with names including apply, accept, or run,
respectively) depending on whether it requires arguments and/or produces results.
For example, stage.thenApply(x -> square(x)).thenAccept(x ->
System.out.print(x)).thenRun(() -> System.out.println()). An additional
form (compose) applies functions of stages themselves, rather than their results.
One stage's execution may be triggered by completion of a single stage, or both of
two stages, or either of two stages. Dependencies on a single stage are arranged
using methods with prefix then. Those triggered by completion of both of two stages
may combine their results or effects, using correspondingly named methods. Those
triggered by either of two stages make no guarantees about which of the results or
effects are used for the dependent stage's computation.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

Completion Stage Methods Chain Actions Together

e A completable future can BigFraction unreduced = BigFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

A dependent action runs on ("188027234133482196") ,
a completed async call result false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce (unreduced) ;

CompletableFuture
.supplyAsync (reduce)
.thenApply (BigFraction

: :toMixedString)

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

Completion Stage Methods Chain Actions Together

' i = BigF i
e A completable future can BigFraction unreduced igFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

» A dependent action runs on ("188027234133482196"),
a completed async call result false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->

Create an unreauced BigFraction.reduce (unreduced) ;

big fraction variable

CompletableFuture
.supplyAsync (reduce)
.thenApply (BigFraction

: :toMixedString)

Completion Stage Methods Chain Actions Together

' i = BigF '
e A completable future can BigFraction unreduced igFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

A dependent action runs on ("188027234133482196") ,
a completed async call result false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce (unreduced) ;

CompletableFuture
- - .supplyAsync (reduce)
Create a supplier lambada variable | ¢henapply (BigFraction
that will reduce the big fraction . : toMixedString)

Completion Stage Methods Chain Actions Together

' i = BigF '
e A completable future can BigFraction unreduced igFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

A dependent action runs on ("188027234133482196") ,
a completed async call result false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce (unreduced) ;

CompletableFuture
- : .supplyAsync (reduce)
This factory method will | —fnenapply (BigFraction
asynchronously reduce the . : toMixedString)
big fraction supplier lambda

Completion Stage Methods Chain Actions Together

' i = BigF '
e A completable future can BigFraction unreduced igFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

A dependent action runs on ("188027234133482196") ,
a completed async call result false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce (unreduced) ;

CompletableFuture
thenApply()’s action is ' iEPPiYAiYn; (z ;duci)_
triggered when future from - thenApply (li ; ac ;:2 _
supplyAsync() completes + : toMixedString)

Completion Stage Methods Chain Actions Together

e A completable future can BigFraction unreduced = BigFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

("188027234133482196"),
false); // Don’t reduce!

» Methods can be chained

W . Supplier<BigFraction> reduce = () ->
together “fluently

BigFraction. reduce (unreduced) ;

CompletableFuture

S . 1lyA d
thenAccept()’s action is supplyAsync (reduce)

7 .thenApply (BigF ti
triggered when future from enApply (BigFraction

———— ::toMixedString)
thenApply() completes .thenAccept (System.out: :println) ;

See en.wikipedia.org/wiki/Fluent interface

https://en.wikipedia.org/wiki/Fluent_interface

Completion Stage Methods Chain Actions Together

» A completable future can
serve as a “completion stage”
for async result processing

« Methods can be chained
together “fluently”

« Each method registers a
lambda action to apply

.
FREGISTER
-

BigFraction unreduced = BigFraction
.valueOf (new BigInteger
("846122553600669882") ,
new BigInteger
("188027234133482196") ,
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce (unreduced) ;

CompletableFuture
.supplyAsync (reduce)
.thenApply (BigFraction
: :toMixedString)
.thenAccept (System.out: :println) ;

11

Completion Stage Methods Chain Actions Together

' i = BigF '
e A completable future can BigFraction unreduced igFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

("188027234133482196"),
false); // Don’t reduce!

* Methods can be chained Supplier<BigFraction> reduce = () ->

together ﬂuently BigFraction.reduce (unreduced) ;
CompletableFuture
: . .supplyAsync (reduce
« A lambda action is called thziAg plz (B i(gFract)ion
only after previous stage . : toMixedString)
completes successfully .thenAccept (System.out: :println) ;

This is what is meant by “chaining”

Completion Stage Methods Chain Actions Together

e A completable future can BigFraction unreduced = BigFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

("188027234133482196"),
false); // Don’t reduce!

* Methods can be chained Supplier<BigFraction> reduce = () ->

together ﬂuently BigFraction.reduce (unreduced) ;
CompletableFuture /@fﬁg’
. L .supplyAsync (reduce)
A lambda action is called thenApply (BlgFraC tion ﬂ&g@)
only after previous stage . toMixedString)
completes successfully . thenAccept (System. out: :println);

Action is “deferred” until previous stage completes & fork-join thread is available

Completion Stage Methods Chain Actions Together

' i = BigF '
e A completable future can BigFraction unreduced igFraction

” : ” .valueOf (new BigInteger
serve as a completlon stage

: ("846122553600669882") ,
for async result processing new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce (unreduced) ;
 Fluent chaining enables
async programming to look CompletableFuture

like sync programming -supplyAsync (reduce)
.thenApply (BigFraction

: :toMixedString)
.thenAccept (System.out: :println) ;

14

Completion Stage Methods Chain Actions Together

« Use completion stages to avoid blocking the caller thread until the result
must be obtained

15

Completion Stage Methods Chain Actions Together

» Use completion stages to avoid blocking the caller thread, e.g.
 Avoid calling join() or get() unless absolutely necessary

16

Completion Stage Methods Chain Actions Together

» Use completion stages to avoid blocking the caller thread, e.g.
 Avoid calling join() or get() unless absolutely necessary
« Improves responsiveness by not blocking

17

Completion Stage Methods Chain Actions Together

» Use completion stages to avoid blocking the caller thread, e.g.

 Avoid calling join() or get() unless absolutely necessary

 Clients & servers that apply the Asynchronous Completion
Token (ACT) pattern may avoid blocking completely

Non-blocking Operations

[

Client (or Server)

I Send Request (ACT) ~
1

Service

async_operation

service ~
dispatcr! @ Return Response (ACT) ? I
Dispatch Result (ACT) ©) I dispatch ACT
process_result @ Process Result]

See www.dre.vanderbilt.edu/~schmidt/PDF/ACT.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/ACT.pdf

Completion Stage Methods Chain Actions Together

° <<Java Class=>
A Comp|Eta’|’3|e fUtur_e Can . (& CompletableFuture<T>
serve as a "completion stage” [o
for async result proceSS|ng @ cancel{boolean):boolean

@ isCancelled()-boolean

@ isDone()-boolean

@ get()

@ get(long, TimeUnit)

@ join()

@ complete(T):-boolean

& supplyAsync{Supplier<U=) CompletableFuture<U=>

& supplyAsync(Supplier<U= Executor):CompletableFuture<U=
& runAsync{Runnable): CompletableFuture<Void=

& runAsync(Runnable Executor):CompletableFuture<Void=

& completedFuture{U) CompletableFuture<U>

@ thenApply(Function<?=)-.CompletableFuture<U:

@ thenAccept(Consumer<? super T=):.CompletableFuture<Void=

@ thenCombine(

@ whenComplete(BiConsumer=?=).CompletableFuture<T=
& allOf{CompletableFuture[]<?=):CompletableFuture <Void>
& anyOf{CompletableFuture[]<?=):CompletableFuture<Object=

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

Completion Stage Methods Chain Actions Together

° <<Java Class=>
A Completall?le fUtur_e can . (® CompletableFuture<T>
Serve as a completlon stage & CompletableFuture()
for async result proceSS|ng @ cancel{boolean):boolean
@ isCancelled()-boolean
o @ isDone()-boolean
@ get()
® o @ get(long, Timelnit)
@ join()
P @ complete(T):-boolean
& supplyAsync{Supplier<U=) CompletableFuture<U=>
& supplyAsync(Supplier<U> Executor):CompletableFuture<Us
& runAsync{Runnable): CompletableFuture<Void=
& runAsync{Runnable, Executor):CompletableFuture<Void:=>
& completedFuture{U) CompletableFuture<U>

@ thenApply(Function<?=)-.CompletableFuture<U:
@ thenAccept(Consumer<? super T=):.CompletableFuture<Void=

@ thenCombine(CompletionStage«<7? extends U= BiFunction<?=).CompletableFuture<¥:

@ whenComplete(BiConsumer=?=).CompletableFuture<T=
& allOf{CompletableFuture[]<?=):CompletableFuture <Void>
& anyOf{CompletableFuture[]<?=):CompletableFuture<Object=

Juggling is a good analogy for completion stages!

Completion Stage Methods Chain Actions Together

° <<Java Class=>
A Completall?le fUtur_e can . (& CompletableFuture<T>
serve as a "completion stage” [o
for async result proceSS|ng @ cancel{boolean):boolean

@ isCancelled()-boolean

« It only consumes resources | © sDone(boolean

: : ® get()
when an action runs, which | e getiong Timsuni)
@ join()
reduces system overhead o complete(T):boolean
& supplyAsync{Supplier<U=) CompletableFuture<U=>
\nﬁormaﬂoﬂ & supplyAsync(Supplier<U= Executor):CompletableFuture<U=
Auto StartStop & runAsync{Runnable): CompletableFuture<Void=

& runAsync{Runnable, Executor):CompletableFuture<Void:=>
& completedFuture(U):CompletableFuture<U=

Engine
stopped @ thenApply(Function<?=)-.CompletableFuture<U:

@ thenAccept(Consumer<? super T=):.CompletableFuture<Void=

A6°F
@ thenCombine(CompletionStage«<7? extends U= BiFunction<?=).CompletableFuture<¥:
@ thenCompose(Function<?=).CompletableFuture<l=

@ whenComplete(BiConsumer<?=).CompletableFuture<T:

&' allOf{ CompletableFuture[]<%=):CompletableFuture<Void=

& anyOf{CompletableFuture[]<?=):CompletableFuture<Object=

See en.wikipedia.org/wiki/Start-stop system

https://en.wikipedia.org/wiki/Start-stop_system

End of Understand Advanced
Java CompletableFuture
Features: Introducing
Completion Stage Methods

22

