Understand the Pros & Gons of Asynchrony

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Motivate the need for Java futures
by understanding the pros & cons
of asynchrony




Overview of Asynchrony &
Asynchronous Operations




Overview of Asynchrony & Asynchronous Operations

« Asynchrony is a means of concurrent
programming where caller does not
block waiting for callee to complete

See en.wikipedia.org/wiki/Asynchrony (computer programming)



https://en.wikipedia.org/wiki/Asynchrony_(computer_programming)

Overview of Asynchrony & Asynchronous Operations

* Asynchrony iS @ means of concurrent CALLER CALLEE
programming where caller does not ! searchForWord, [
block waiting for callee to complete Pa————— > | S

: , L1 A future, Y L
» An async call immediately returns a :

_ _ searchForWord, &
future & while the computation runs gh | e AECE
“in the background” concurrently | future, =W

searchForWord, :Ij
_________________ - | A
@ N futare; 1 FLE0
| GENE

See en.wikipedia.org/wiki/Asynchronous method invocation



https://en.wikipedia.org/wiki/Asynchronous_method_invocation

Overview of Asynchrony & Asynchronous Operations

. AsynChrony is @ means of concurrent CALLER CALLEE
programming where caller does not

F--

h searchForWord,
block waiting for callee to complete e —— - | Eiged
_ _ (1A future, =
» An async call immediately returns a
_ _ searchForWord,
future & while the computation runs 2 P ——— dBI=IOR
“in the background” concurrently ‘ future,

- i.e., independent of the calling searchForWord,

12) | [FTTTTTT e,

See en.wikipedia.org/wiki/Control flow



https://en.wikipedia.org/wiki/Control_flow

Overview of Asynchrony & Asynchronous Operations

« Asynchrony is a means of concurrent A begin’ O | o
programming where caller does not i'ftziggg?‘ift]ﬁ?ﬁ)“2222“ T result s mariante.
block waiting for callee to complete ~ ™° 1 | et e

| get_resuit |
A

r——— —- — — —

- .
Service thread
I write_result | |
___— -
Service |

Cheniteaa T J
» The future is triggered when the _:_- :
computation completes | Clent |
T T T T T ) 1. Async
call runs

2. Client obtains result after
the computation completes

See upcoming lessons on “Overview of Java Futures"”




Overview of Asynchrony & Asynchronous Operations

« Asynchrony is a means of concurrent A vegin. 0
. ‘ ## Suspend calling thread until result is available.
programming where caller does not S| mid o
block waiting for callee to complete ™/ | rewmresis
et_result _______
‘/\ : I write_lresmt ;_ Service thread_;

L — — — — —_——— -

« The future is triggered when the
computation completes

» The client may or may not block

awaiting the results, depending
on various factors




Overview of Asynchrony & Asynchronous Operations

 e.g., Android’s AsyncTask framework performs background operations &
publishes results on the user-interface (UI) thread without having to

manipulate threads and/or handlers

AsyncTask
4. doInBackGround ()
D)
) —)é —>§ 9%9 : e
= >$
7 Executor
-~

5. onProgressUpdate()
-

6. onPostExecute ()

A{//////;fiexecute(future)

2. onPreExecute()

7
_>§§ 1. execute (url)

See developer.android.com/reference/android/os/AsyncTask



https://developer.android.com/reference/android/os/AsyncTask

Overview of Asynchrony & Asynchronous Operations

 e.g., Android’s AsyncTask framework performs background operations &
publishes results on the user-interface (UI) thread without having to

manipulate threads and/or handlers

Background thread(s) AsyncTask

« AsyncTask executes long-duration
operations asynchronously in one
or more background threads

S <
= 7esg
7 Executor

7
5. onProgressUpdate()
-

wckGrOund 0O
v "5 "f

6. onPostExecute ()

A{//////;fiexecute(future)

2. onPreExecute()

4

_>§§ 1. execute (url)

10




Overview of Asynchrony & Asynchronous Operations

 e.g., Android’s AsyncTask framework performs background operations &

publishes results on the user-interface (UI) thread without having to
manipulate threads and/or handlers

Executor

7
5. onProgressUpdate()
-

* Blocking operations in background
threads don't block the calling
(e.g., UI) thread

6. onPostExecute ()

A{//////;fiexecute(future)

2. onPreExecute()

7
_>§§ 1. execute (url)

™~ Calling thread
See developer.android.com/training/multiple-threads/communicate-ui



https://developer.android.com/training/multiple-threads/communicate-ui

Overview of Asynchrony & Asynchronous Operations

 e.g., Android’s AsyncTask framework performs background operations &

publishes results on the user-interface (UI) thread without having to
manipulate threads and/or handlers

AsyncTask
4. doInBackGround ()
|"§ ->§ 959 > -
= >$
7 Executor
-~

5. onProgressUpdate()
-

6. onPostExecute ()

A{//////;fiexecute(future)

2. onPreExecute()

« The calling (UI) thread can be
notified upon completion, failure, y
or progress of the async task | 1. execute (url)

9
4
y &\ N Galling thread

\J

AsyncTask shields client code from details of programming futures




The Pros of Asynchrony

13



The Pros of Asynchrony

* Pros of asynchronous operations

X/

14



The Pros of Asynchrony

* Pros of asynchronous operations

« Responsiveness

* A calling thread needn’t block waiting
for the async request to complete

See en.wiki

edia.org/wiki/Asynchronous method invocation



https://en.wikipedia.org/wiki/Asynchronous_method_invocation

The Pros of Asynchrony

* Pros of asynchronous operations

- Elasticity

« Multiple requests can run scalably
& concurrently on multiple cores

See en.wikipedia.org/wiki/Elasticity (cloud computing)



https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)

The Pros of Asynchrony

* Pros of asynchronous operations

- Elasticity

« Multiple requests can run scalably
& concurrently on multiple cores

 Able to better leverage parallelism
available in multi-core systems

See headcrashing.wordpress.com/2015/07/20/iobound-completablefuture



https://headcrashing.wordpress.com/2015/07/20/iobound-completablefuture/

The Pros of Asynchrony

* Pros of asynchronous operations

0100000 11 198

- Elasticity

 Multiple requests can run scalably
& concurrently on multiple cores

« Elasticity is particularly useful
to auto-scale computations
in cloud environments

See en.wikipedia.org/wiki/Elasticity (cloud computing) & en.wikipedia. org/W|k|/AutoscaI|ngﬂ



https://en.wikipedia.org/wiki/Elasticity_(cloud_computing)
https://en.wikipedia.org/wiki/Autoscaling

The Cons of Asynchrony

19



The Cons of Asynchrony

« Cons of asynchronous operations

20



The Cons of Asynchrony
 Cons of asynchronous operations
« Unpredictability

« Response times may not unpredictable due
to non-determinism of async operations

Non-determinism is a general problem with concurrency & not just asynchrony




The Cons of Asynchrony

» Cons of asynchronous operations CALLER CALLEE

o Unpredlctablllty 1 searchForWord, ‘_!_
S —— -

future; 4

searchForWord, i

- Results can occur in a different order *mmmmmmmmms ftare, 1,

than the original calls were made future result, -

¢ — |

{ ) searchForWord;

OUT OF =

. future result, r:*

‘ T

) future result,

) L

\_ J i

Additional time & effort may be required if results must be ordered somehow




The Cons of Asynchrony

 Cons of asynchronous operations

« Complicated programming
& debugging




The Cons of Asynchrony

- Cons of asynchronous operations Parallel and Asynchronous Programming

in Java 8

Java 8 offered a boon to parallel and asynchronous programming. Let's check out the
lessons Java learned from JavaScript and how JDK 8 changed the game.

« Complicated programming e

« The patterns & best-practices N |
of asynchronous programming eSS
are not well understood

experienced developer, but Java 8 brought a lot of changes that should make this performance-boosting
trick a lot more manageable.

CompletableFuture

CompletableFuture implements both the ruture and the completionstage interface. ruture already existed pre-
Java8, but it wasn't very developer-friendly by itself. You could only get the result of the asynchronous
computation by using the .get() method, which blocked the rest (making the async part pretty pointless
most of the time) and you needed to implement each possible scenario manually. Adding

the completionstage interface was the breakthrough that made asynchronous programming in Java
workable.

—
— Completionstage is a promise, namely the promise that the computation will eventually be done. It contains
a bunch of methods that let you attach callbacks that will be executed on that completion. Now we can
handle the result without blocking.
y
y
-_—

There are two main methods that let you start the asynchronous part of your code: supplyasync if you want

to do something with the result of the method, and runasync if you don’t.

See dzone.com/articles/parallel-and-asynchronous-programming-in-java-8



https://dzone.com/articles/parallel-and-asynchronous-programming-in-java-8

The Cons of Asynchrony

» Cons of asynchronous operations

« Complicated programming

& debugging

The patterns & best-practices

of asynchronous programming

are not well understood

« Async programming is
tricky without proper

abstractions

See dzone.com/articles/callback-hell



https://dzone.com/articles/callback-hell

The Cons of Asynchrony

 Cons of asynchronous operations

« Complicated programming
& debugging

e Errors can be hard to track

due to unpredictability

See www.jetbrains.com/hel

/idea/tutorial-java-debugging-dee

-dive.html



http://www.jetbrains.com/help/idea/tutorial-java-debugging-deep-dive.html

The Cons of Asynchrony

 Cons of asynchronous operations

« Complicated programming
& debugging

« Errors can be hard to track
due to unpredictability

Again, this non-determinism is a general problem with concurrent processing




Weighing the Pros &
Cons of Asynchrony

28



Weighing the Pros & Cons of Asynchrony

« Two things are necessary for the pros
of asynchrony to outweigh the cons

29



Weighing the Pros & Cons of Asynchrony

« Two things are necessary for the pros
of asynchrony to outweigh the cons

» Performance should improve to
offset the increased complexity of
programming & debugging

Productivity

COMPLETABLE_FUTURES _1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs Performance
PARALLEL ST REAM executed in 428 msecs

COMPLETABLE _FUTURES 2 executed in 82 msecs

COMPLETABLE_FUTURES _1 executed in 83 msecs

PARALLEL STREAM executed in 102 msecs
QUENTIA REAM executed In m

See upcoming lesson on “Java Completable Futures ImageStreamGang Example’




Weighing the Pros & Cons of Asynchrony

« Two things are necessary for the pros
of asynchrony to outweigh the cons Responsive

« An asynchronous programming Resment
model should reflect the key
principles of the reactive paradigm

Message-
driven

See earlier lesson on " Overview of Reactive Programming”




Weighing the Pros & Cons of Asynchrony

 Java’'s completable futures framework |class CompletableFuture<T>
provides an asynchronous concurrent jovalengOpject
. java.util.concurrent.CompletableFuture<T>
programming model that performs o o
. . mplemented Interfaces:
well & supports the reactive paradigm |conptetionstage<t>, Future<t>

public class CompletableFuture<T>
extends Object
implements Future<T>, CompletionStage<T=>

A Future that may be explicitly completed (setting its value and
status), and may be used as a CompletionStage, supporting
dependent functions and actions that trigger upon its completion.

When two or more threads attempt to complete,
completeExceptionally, or cancel a CompletableFuture, only one
of them succeeds.

In addition to these and related methods for directly manipulating
status and results, CompletableFuture implements interface
CompletionStage with the following policies:

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ CompletableFuture.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

End of Understand the
Pros & Cons of Asynchrony

33



