Understand the Pros & Cons of Synchrony

Douglas C. Schmidt

<u>d.schmidt@vanderbilt.edu</u>

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software Integrated Systems

Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

 Motivate the need for Java futures by understanding the pros & cons of synchrony

 Method calls in typical Java programs are largely synchronous

 Method calls in typical Java programs are largely synchronous

 i.e., a callee borrows the thread of its caller until its computation(s) finish & a result is returned

Note "request/response" nature of these calls

• Pros of synchronous calls

- Pros of synchronous calls
 - "Intuitive" to program & debug

- Pros of synchronous calls
 - "Intuitive" to program & debug, e.g.
 - Maps onto common two-way method patterns

- Pros of synchronous calls
 - "Intuitive" to program & debug, e.g.
 - Maps onto common two-way method patterns
 - Local caller state retained when callee returns

See wiki.c2.com/?ActivationRecord

- Pros of synchronous calls
 - "Intuitive" to program & debug, e.g.
 - Maps onto common two-way method patterns
 - Local caller state retained when callee returns

```
byte[] downloadContent(URL url) {
  byte[] buf = new byte[BUFSIZ];
  ByteArrayOutputStream os =
    new ByteArrayOutputStream();
  InputStream is = url.openStream();

  for (int bytes;
        (bytes = is.read(buf)) > 0;)
    os.write(buf, 0, bytes); ...
```


Cons of synchronous calls

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems
 - Blocking threads incur overhead
 - e.g., synchronization, context switching, data movement, & memory management costs

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems
 - Blocking threads incur overhead
 - Selecting right # of threads is hard

```
List<Image> filteredImages = urls
   .parallelStream()
   .filter(not(this::urlCached))
   .map(this::downloadImage)
```

.flatMap(this::applyFilters)

Efficient Efficient
Performance Resource
Utilization

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems
 - Blocking threads incur overhead
 - Selecting right # of threads is hard

```
List<Image> filteredImages = urls
   .parallelStream()
   .filter(not(this::urlCached))
   .map(this::downloadImage)
   .flatMap(this::applyFilters)
   .collect(toList());
```


Efficient Performance

Efficient Resource Utilization

A large # of threads may help to improve performance, but can also waste resources

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems
 - Blocking threads incur overhead
 - Selecting right # of threads is hard

```
List<Image> filteredImages = urls
   .parallelStream()
   .filter(not(this::urlCached))
   .map(this::downloadImage)
   .flatMap(this::applyFilters)
   .collect(toList());
```


Efficient Performance Efficient Resource Utilization

A small # of threads may conserve resources at the cost of performance

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems
 - Blocking threads incur overhead
 - Selecting right # of threads is hard

Efficient Performance

Efficient Resource Utilization

Particularly tricky for I/Obound programs that need more threads to run efficiently

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems
 - May need to change the size of the common fork-join pool

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems
 - May need to change the size of the common fork-join pool, e.g.
 - Set a system property


```
String desiredThreads = "10";
System.setProperty
  ("java.util.concurrent." +
    "ForkJoinPool.common." +
    "parallelism",
    desiredThreads);
```


It's hard to estimate the total # of threads to set in the common fork-join pool

- Cons of synchronous calls
 - May not leverage all parallelism available in multi-core systems
 - May need to change the size of the common fork-join pool, e.g.
 - Set a system property
 - Or use the ManagedBlocker to increase common pool size automatically/temporarily

ManageBlockers can only be used with the common fork-join pool..

End of Understand the Pros & Cons of Synchrony