
Understand the Pros & Cons of Synchrony

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Motivate the need for Java futures

by understanding the pros & cons
of synchrony

3

Overview of Synchrony
& Synchronous Operations

4

• Method calls in typical Java programs
are largely synchronous

Overview of Synchrony & Synchronous Operations

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

e.g., calls on Java collections & behaviors in Java stream aggregate operations

5

• Method calls in typical Java programs
are largely synchronous

• i.e., a callee borrows the thread of its caller
until its computation(s) finish

Overview of Synchrony & Synchronous Operations

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

6

• Method calls in typical Java programs
are largely synchronous

• i.e., a callee borrows the thread of its caller
until its computation(s) finish & a result
is returned

Overview of Synchrony & Synchronous Operations

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

Note “request/response”
nature of these calls

7

The Pros of Synchrony

8

• Pros of synchronous calls

The Pros of Synchrony

CALLER

9

• Pros of synchronous calls

• “Intuitive” to program & debug

The Pros of Synchrony

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

10

• Pros of synchronous calls

• “Intuitive” to program & debug, e.g.

• Maps onto common two-way method patterns

The Pros of Synchrony

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See www.iro.umontreal.ca/~keller/Layla/remote.pdf

http://www.iro.umontreal.ca/~keller/Layla/remote.pdf

11

• Pros of synchronous calls

• “Intuitive” to program & debug, e.g.

• Maps onto common two-way method patterns

• Local caller state retained when callee returns

The Pros of Synchrony

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See wiki.c2.com/?ActivationRecord

http://wiki.c2.com/?ActivationRecord

12

• Pros of synchronous calls

• “Intuitive” to program & debug, e.g.

• Maps onto common two-way method patterns

• Local caller state retained when callee returns

The Pros of Synchrony

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See wiki.c2.com/?ActivationRecord

byte[] downloadContent(URL url) {

byte[] buf = new byte[BUFSIZ];

ByteArrayOutputStream os =

new ByteArrayOutputStream();

InputStream is = url.openStream();

for (int bytes;

(bytes = is.read(buf)) > 0;)

os.write(buf, 0, bytes); ...

http://wiki.c2.com/?ActivationRecord

13

The Cons of Synchrony

14

• Cons of synchronous calls

The Cons of Synchrony

15

• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

The Cons of Synchrony

CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See www.ibm.com/developerworks/library/j-jvmc3

http://www.ibm.com/developerworks/library/j-jvmc3/index.html

16

• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

• Blocking threads incur overhead

• e.g., synchronization,
context switching, data
movement, & memory
management costs

The Cons of Synchrony

See www.ibm.com/developerworks/library/j-jvmc3

http://www.ibm.com/developerworks/library/j-jvmc3

17

The Cons of Synchrony

Efficient
Resource
Utilization

Efficient
Performance

• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

• Blocking threads incur overhead

• Selecting right # of threads is hard

List<Image> filteredImages = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList());
Image downloadImage(URL url){

return new Image(url,

downloadContent(url));

}

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

18

The Cons of Synchrony
• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

• Blocking threads incur overhead

• Selecting right # of threads is hard

Efficient
Resource
Utilization

Efficient
Performance

List<Image> filteredImages = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList());
A large # of threads may help to improve

performance, but can also waste resources

19

• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

• Blocking threads incur overhead

• Selecting right # of threads is hard

The Cons of Synchrony

Efficient
Resource
Utilization

Efficient
Performance

List<Image> filteredImages = urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList()); A small # of threads may conserve
resources at the cost of performance

20

The Cons of Synchrony
• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

• Blocking threads incur overhead

• Selecting right # of threads is hard

Efficient
Resource
Utilization

Efficient
Performance

Particularly tricky for I/O-
bound programs that need

more threads to run efficiently

21

• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

• May need to change the size of
the common fork-join pool

The Cons of Synchrony

See lesson on “The Java Fork-Join Pool: Maximizing Core Utilization w/the Common Fork-Join Pool”

22

• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

• May need to change the size of
the common fork-join pool, e.g.

• Set a system property

The Cons of Synchrony
String desiredThreads = "10";

System.setProperty

("java.util.concurrent." +

"ForkJoinPool.common." +

"parallelism",

desiredThreads);

It’s hard to estimate the total # of threads to set in the common fork-join pool

23

• Cons of synchronous calls

• May not leverage all parallelism
available in multi-core systems

• May need to change the size of
the common fork-join pool, e.g.

• Set a system property

• Or use the ManagedBlocker
to increase common pool size
automatically/temporarily

The Cons of Synchrony

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

ManageBlockers can only be used
with the common fork-join pool..

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

24

End of Understand the
Pros & Cons of Synchrony

