
The History of Concurrency

& Parallelism Support in Java

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

JAVA HISTORY

• Learn the history of Java
concurrency & parallelism

3

Learning Objectives in this Part of the Lesson

Hopefully, you’ll already know some of this!!!

• Learn the history of Java
concurrency & parallelism

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C

4

A Brief History of
Concurrency in Java

5

A Brief History of Concurrency in Java
• Foundational concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C
See en.wikipedia.org/wiki/Java_version_history#JDK_1.0

e.g., Java threads &
built-in monitor objects
were available in Java 1

https://en.wikipedia.org/wiki/Java_version_history#JDK_1.0

6

A Brief History of Concurrency in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

7

A Brief History of Concurrency in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

SimpleBlockingBoundedQueue<Integer>

simpleQueue = new

SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {

new Thread(new Producer<>

(simpleQueue)),

new Thread(new Consumer<>

(simpleQueue))

};

for (Thread thread : threads)

thread.start();

for (Thread thread : threads)

thread.join();

Allow multiple threads to
communicate & interact

via a bounded buffer

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

8

A Brief History of Concurrency in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

Start & join these
multiple threads

SimpleBlockingBoundedQueue<Integer>

simpleQueue = new

SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {

new Thread(new Producer<>

(simpleQueue)),

new Thread(new Consumer<>

(simpleQueue))

};

for (Thread thread : threads)

thread.start();

for (Thread thread : threads)

thread.join();

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

9

A Brief History of Concurrency in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

class SimpleBlockingBoundedQueue

<E> {

public E take() ...{

synchronized(this) {

while (mList.isEmpty())

wait();

notifyAll();

return mList.poll();

}

}

Built-in monitor object
mutual exclusion &

coordination primitives

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

10

A Brief History of Concurrency in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

• Efficient, but low-level & very
limited in capabilities

11

A Brief History of Concurrency in Java
• Foundational concurrency support

• Focus on basic multi-threading
& synchronization primitives

• Efficient, but low-level & very
limited in capabilities

• Many accidental complexities

See en.wikipedia.org/wiki/No_Silver_Bullet

Accidental complexities arise
from limitations with software
techniques, tools, & methods

https://en.wikipedia.org/wiki/No_Silver_Bullet

12

A Brief History of Concurrency in Java
• Advanced concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C
See en.wikipedia.org/wiki/Java_version_history#J2SE_5.0

e.g., Java executor framework,
synchronizers, blocking queues,
atomics, & concurrent collections
that became available in Java 5+

https://en.wikipedia.org/wiki/Java_version_history#J2SE_5.0

13

ThreadPoolExecutor

3.take()

4.run()

A Brief History of Concurrency in Java
• Advanced concurrency support

• Focus on course-grained “task
parallelism”

See en.wikipedia.org/wiki/Task_parallelism

WorkerThreads

execute() run()

runnable

runnable
Future

Future

Future

Future

Completion

Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

submit()

take()

5.add()

1.submit(task)

6.take()

https://en.wikipedia.org/wiki/Task_parallelism

14

ThreadPoolExecutor

3.take()

4.run()

A Brief History of Concurrency in Java
• Advanced concurrency support

• Focus on course-grained “task
parallelism”

• e.g., concurrently run various
tasks at the same time

WorkerThreads

execute() run()

runnable

runnable
Future

Future

Future

Future

Completion

Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

submit()

take()

5.add()

1.submit(task)

6.take()

15

A Brief History of Concurrency in Java

See github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

Create a fixed-sized thread pool
& also coordinate the starting &
stopping of multiple tasks that

acquire/release shared resources

• Advanced concurrency support

• Focus on course-grained “task
parallelism”

• e.g., concurrently run various
tasks at the same time

ExecutorService executor =

Executors.newFixedThreadPool

(numOfBeings,

mThreadFactory);

...

CyclicBarrier entryBarrier =

new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =

new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)

executor.execute

(makeBeingRunnable(i,

entryBarrier,

exitBarrier));

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

16

A Brief History of Concurrency in Java
• Advanced concurrency support

• Focus on course-grained “task
parallelism”

• Feature-rich & optimized, but also
tedious & error-prone to program

17

A Brief History of
Parallelism in Java

18

A Brief History of Parallelism in Java
• Foundational parallelism support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C
See en.wikipedia.org/wiki/Java_version_history#Java_SE_7

e.g., Java fork-join pool
was released in Java 7

https://en.wikipedia.org/wiki/Java_version_history#Java_SE_7

19

A Brief History of Parallelism in Java
• Foundational parallelism support

• Focus on finer-grained data
parallelism

See en.wikipedia.org/wiki/Data_parallelism

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

https://en.wikipedia.org/wiki/Data_parallelism

20

A Brief History of Parallelism in Java
• Foundational parallelism support

• Focus on finer-grained data
parallelism

• e.g., runs the same task
on different elements of
data by using the “split-
apply-combine” model

See www.jstatsoft.org/article/view/v040i01/v40i01.pdf

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

http://www.jstatsoft.org/article/view/v040i01/v40i01.pdf

21See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

A Brief History of Parallelism in Java
• Foundational parallelism support

• Focus on finer-grained data
parallelism

• e.g., runs the same task
on different elements of
data by using the “split-
apply-combine” model

List<List<SearchResults>>

listOfListOfSearchResults =

ForkJoinPool

.commonPool()

.invoke(new

SearchWithForkJoinTask

(inputList,

mPhrasesToFind, ...));

Use a common fork-join pool
to search input strings to
locate phrases that match

45,000+ phrases

Search Phrases

Input Strings to Search

…

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

22

A Brief History of Parallelism in Java
• Foundational parallelism support

• Focus on data parallelism

• Powerful & scalable, but
tedious to program directly

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2

fork()

Task

fork() fork()

23

A Brief History of Parallelism in Java
• Advanced parallelism support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C
See en.wikipedia.org/wiki/Java_version_history#Java_SE_8

e.g., Java parallel streams
& completable futures

made available in Java 8

https://en.wikipedia.org/wiki/Java_version_history#Java_SE_8

24

A Brief History of Parallelism in Java

filter(not(this::urlCached))

collect(toList())

Parallel Streams

…

map(this::downloadImage)

flatMap(this::applyFilters)

• Advanced parallelism support

• Focus on fine-grained functional
programming for data parallelism

See en.wikipedia.org/wiki/Data_parallelism

https://en.wikipedia.org/wiki/Data_parallelism

25

A Brief History of Parallelism in Java
• Advanced parallelism support

• Focus on fine-grained functional
programming for data parallelism
& reactive asynchrony

/page\ =

supplyAsync

(getStartPage())

/imgNum2\ = /page\

.thenComposeAsync

(crawlHyperLinks

(page))

/imgNum1\ = /page\

.thenApplyAsync

(countImages(page))

.thenApply(List::size)

/imgNum1\.thenCombine(/imgNum2\,

(imgNum1, imgNum2) ->

Integer::sum)

See gist.github.com/staltz/868e7e9bc2a7b8c1f754

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

26

A Brief History of Parallelism in Java
• Advanced parallelism support

• Focus on fine-grained functional
programming for data parallelism
& reactive asynchrony

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Synchronously download images that
aren’t already cached from a list of URLs

& process/store the images in parallel

List<Image> images =

urls

.parallelStream()

.filter(not(this::urlCached))

.map(this::downloadImage)

.flatMap(this::applyFilters)

.collect(toList());

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

27

A Brief History of Parallelism in Java
• Advanced parallelism support

• Focus on fine-grained functional
programming for data parallelism
& reactive asynchrony

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

CompletableFuture<Stream<Image>>

resultsFuture = urls

.stream()

.map(this::checkUrlCachedAsync)

.map(this::downloadImageAsync)

.flatMap(this::applyFiltersAsync)

.collect(toFuture())

.thenApply(stream ->

log(stream.flatMap

(Optional::stream),

urls.size()))

.join();

Combines streams & completable futures
to asynchronously download images that
aren’t already cached from a list of URLs

& process/store the images in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

28

A Brief History of Parallelism in Java
• Advanced parallelism support

• Focus on fine-grained functional
programming for data parallelism
& reactive asynchrony

• Focus on pub/sub reactive
streams frameworks

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization Packages

Ja
va

/J
N

I
C
+

+
/C

C
See en.wikipedia.org/wiki/Java_version_history#Java_SE_9

e.g., Java reactive streams made
available in Java 9 have enabled the
RxJava & Project Reactor frameworks

https://en.wikipedia.org/wiki/Java_version_history#Java_SE_9

29

A Brief History of Parallelism in Java
• Advanced parallelism support

• Focus on fine-grained functional
programming for data parallelism
& reactive asynchrony

• Focus on pub/sub reactive
streams frameworks

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

List<Image> filteredImages =

ReactorUtils

.fromIterableParallel(urls)

.filter(url -> !urlCached(url))

.map(this::blockingDownload)

.flatMap(this::applyFilters)

.sequential()

.collectList()

.block();

Applies RxJava & Project Reactor reactive
streams to asynchronously download images

that aren’t already cached from a list of
URLs & process/store the images in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

30

A Brief History of Parallelism in Java
• Advanced parallelism support

• Focus on fine-grained functional
programming for data parallelism
& reactive asynchrony

• Focus on pub/sub reactive
streams frameworks

• Strikes an effective balance between
productivity & performance

31

A Brief History of Parallelism in Java
• Advanced parallelism support

• Focus on fine-grained functional
programming for data parallelism
& reactive asynchrony

• Focus on pub/sub reactive
streams frameworks

• Strikes an effective balance between
productivity & performance

• However, may be overly prescriptive

32

The Evolution of Java from
Concurrency to Parallelism

33

• Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

See www.youtube.com/watch?v=NsDE7E8sIdQ

The Evolution of Java from Concurrency to Parallelism

http://www.youtube.com/watch?v=NsDE7E8sIdQ

34See www.infoq.com/presentations/parallel-java-se-8

• Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

His talk emphasizes that Java 8
combines functional programming
with fine-grained data parallelism
to leverage many-core processors

The Evolution of Java from Concurrency to Parallelism

http://www.infoq.com/presentations/parallel-java-se-8

35See www.youtube.com/watch?v=cN_DpYBzKso

• Rob Pike also has a good talk that
explains the differences between
concurrency & parallelism

The Evolution of Java from Concurrency to Parallelism

His talk emphasizes that
concurrency is about dealing
with lots of things at once,

whereas parallelism is about
doing lots of things at once

http://www.youtube.com/watch?v=cN_DpYBzKso

36

End of the History of
Concurrency & Parallelism

Support in Java

