
A Case Study of “Gang of Four”
(GoF) Patterns: Part 3

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

2

Topics Covered in this Part of the Module
• Describe the object-oriented

(OO) expression tree case study
• Evaluate the limitations with

algorithmic design techniques
• Present an OO design for the

expression tree processing app

Expression_Tree

Component_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node Composite_
Unary_Node

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

3

How to Design an Expression Tree Processing App
• Apply an Object-Oriented

(OO) design based on
modeling classes & objects
in the application domain

Binary
Nodes

Unary
Node

Leaf Nodes

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

4

• Apply an Object-Oriented
(OO) design based on
modeling classes & objects
in the application domain

• Employ “hierarchical data
abstraction” where design
components are based on
stable class & object roles
& relationships
• Rather than functions

corresponding to actions

ET_Iterator

ET_Iterator_Impl

Pre_Order_ET
_|Iterator_Impl

In_Order_ET
_Iterator_Impl

Post_Order_ET
_Iterator_Impl

Level_Order_ET
_Iterator_Impl

How to Design an Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

5

• Apply an Object-Oriented
(OO) design based on
modeling classes & objects
in the application domain

• Employ “hierarchical data
abstraction” where design
components are based on
stable class & object roles
& relationships

• Associate actions with
specific objects and/or
classes of objects
• Emphasize high cohesion

& low coupling

ET_Event_Handler
handle_input()
prompt_user()
get_input()
make_command()
execute_command()

Event_Handler

Verbose_ET_
Event_Handler

prompt_user()
make_command()

Succinct_ET_
Event_Handler

prompt_user()
make_command()

How to Design an Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

6

• Apply an Object-Oriented
(OO) design based on
modeling classes & objects
in the application domain

• Employ “hierarchical data
abstraction” where design
components are based on
stable class & object roles
& relationships

• Associate actions with
specific objects and/or
classes of objects

• Group classes & objects in
accordance to patterns &
combine them to form
frameworks

Strategy &
Template Method

Reactor Singleton

ET_Command_Factory ET_Event_Handler

ET_Command

ET_Context

Verbose_ET_
Event_Handler

Succinct_ET_
Event_Handler

<< create >>

Event_Handler Options Reactor

How to Design an Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

7

An OO Expression Tree Design Method
• Start with object-oriented (OO)

modeling of the “expression tree”
application domain

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

8

Binary
Nodes

Unary
Node

Leaf Nodes

An OO Expression Tree Design Method
• Start with object-oriented (OO)

modeling of the “expression tree”
application domain

• Model a tree as a
collection of nodes

Ap
pl

ic
at

io
n-

de
pe

nd
en

t
st

ep
s

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

9

• Start with object-oriented (OO)
modeling of the “expression tree”
application domain

An OO Expression Tree Design Method

• Model a tree as a
collection of nodes

• Represent nodes as a
hierarchy, capturing
properties of each node
• e.g., arities

Ap
pl

ic
at

io
n-

de
pe

nd
en

t
st

ep
s

Component_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node Composite_
Unary_Node

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

10

• Start with object-oriented (OO)
modeling of the “expression tree”
application domain

• Conduct Scope, Commonality, & Variability analysis to determine
stable interfaces & extension points

• Apply “Gang of Four” (GoF) patterns to guide efficient & extensible
development of framework components

• Integrate pattern-oriented language/library features w/frameworks Ap
pl

ic
at

io
n-

in
de

pe
nd

en
t

st
ep

s

• Model a tree as a
collection of nodes

• Represent nodes as a
hierarchy, capturing
properties of each node
• e.g., arities

Ap
pl

ic
at

io
n-

de
pe

nd
en

t
st

ep
s

An OO Expression Tree Design Method

Composite

Expression_Tree
Component_Node

Composite_
Unary_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node

B
rid

ge

en.wikipedia.org/wiki/Design_Patterns has info on “Gang of Four” (GoF) book

http://en.wikipedia.org/wiki/Design_Patterns

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

11

C++ Pattern-Oriented Language/Library Features
• Over time, common patterns

become institutionalized as
programming language
features

Expression_Tree expr_tree = …;
Print_Visitor print_visitor;

Visitor object (based on
Visitor pattern)

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

12

Expression_Tree expr_tree = …;
Print_Visitor print_visitor;

for (Expression_Tree::iterator iter =
 expr_tree.begin();
 iter != expr_tree.end();
 ++iter)
 (*iter).accept(print_visitor);

Traditional STL
iterator loop

C++ Pattern-Oriented Language/Library Features
• Over time, common patterns

become institutionalized as
programming language
features

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

13

Expression_Tree expr_tree = …;
Print_Visitor print_visitor;

for (Expression_Tree::iterator iter =
 expr_tree.begin();
 iter != expr_tree.end();
 ++iter)
 (*iter).accept(print_visitor);

std::for_each
 (expr_tree.begin(), expr_tree.end(),
 [&print_visitor]
 (const Expression_Tree &t)
 { t.accept(print_visitor);});

C++11 lambda expression

C++ Pattern-Oriented Language/Library Features
• Over time, common patterns

become institutionalized as
programming language
features

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

14

Expression_Tree expr_tree = …;
Print_Visitor print_visitor;

for (Expression_Tree::iterator iter =
 expr_tree.begin();
 iter != expr_tree.end();
 ++iter)
 (*iter).accept(print_visitor);

std::for_each
 (expr_tree.begin(), expr_tree.end(),
 [&print_visitor]
 (const Expression_Tree &t)
 { t.accept(print_visitor);});

for (auto &iter : expr_tree)
 iter.accept(print_visitor);

C++11 range-based for loop

See en.wikipedia.org/wiki/C++11 for info on C++11

C++ Pattern-Oriented Language/Library Features
• Over time, common patterns

become institutionalized as
programming language
features

http://en.wikipedia.org/wiki/C++11

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

15

ExpressionTree exprTree = …;
ETVisitor printVisitor =
 new PrintVisitor();

for (ComponentNode node : exprTree)
 node.accept(printVisitor);

Java for-each loop (assumes
tree implements Iterable)

Java Pattern-Oriented Language/Library Features
• Over time, common patterns

become institutionalized as
programming language
features

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

16

ExpressionTree exprTree = …;
ETVisitor printVisitor =
 new PrintVisitor();

for (ComponentNode node : exprTree)
 node.accept(printVisitor);

for (Iterator<ExpressionTree> iter =
 exprTree.iterator();
 iter.hasNext();
)
 iter.next().accept
 (printVisitor);

Java Pattern-Oriented Language/Library Features

Java iterator style

• Over time, common patterns
become institutionalized as
programming language
features

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

17

Summary

Expression_Tree Component_Node

ET_Visitor

Evaluation_Visitor

std::stack

Print_Visitor

ET_Iterator ET_Iterator_Impl

Pre_Order_ET
_Iterator_Impl

In_Order_ET
_Iterator_Impl

Post_Order_ET
_Iterator_Impl

Level_Order_ET
_Iterator_Impl LQueue

<< create >>

<< accept >> • OO designs are characterized
by structuring software
architectures around
objects/classes in domains
• Rather than on actions

performed by the
software

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

18

Summary
• OO designs are characterized

by structuring software
architectures around
objects/classes in domains
• Rather than on actions

performed by the
software

• Systems evolve & functionality
changes, but well-defined
objects & class roles &
relationships are often
relatively stable over time

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

19

Summary
• OO designs are characterized

by structuring software
architectures around
objects/classes in domains
• Rather than on actions

performed by the
software

• Systems evolve & functionality
changes, but well-defined
objects & class roles &
relationships are often
relatively stable over time

• To obtain flexible & reusable
software, therefore, it’s better
to base the structure on
objects/classes rather
than on actions

Expression_Tree

Component_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node Composite_
Unary_Node

A Case Study of “Gang of Four”
(GoF) Patterns: Part 4

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

21

Topics Covered in this Part of the Module
• Describe the object-oriented

(OO) expression tree case study
• Evaluate the limitations with

algorithmic design techniques
• Present an OO design for the

expression tree processing app
• Summarize the patterns in

the expression tree design

Design Problem Pattern(s)

Extensible expression tree structure Composite

Encapsulating variability & simplifying
memory management

Bridge

Parsing expressions & creating
expression tree

Interpreter &
Builder

Extensible expression tree operations Iterator & Visitor

Implementing STL iterator semantics Prototype

Consolidating user operations Command

Consolidating creation of variabilities for
commands, iterators, etc.

Abstract Factory &
Factory Method

Ensuring correct protocol for commands State

Structuring the application event flow Reactor

Supporting multiple operation modes Template Method
& Strategy

Centralizing access to global resources Singleton

Eliminating loops via the STL
std::for_each() algorithm

Adapter

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

22

Outline of the Design Space for GoF Patterns
Abstract the process

of instantiating
objects

Describe how classes &
objects can be combined to

form larger structures

Concerned with
communication
between objects

en.wikipedia.org/wiki/Design_Patterns has info on “Gang of Four” (GoF) book

Purpose: Reflects What the Pattern Does

Creational Structural Behavioral
Class Factory

Method
Adapter

(class)
Interpreter
Template Method

Object Abstract
Factory

Builder
Prototype
Singleton

Adapter
(object)

Bridge
Composite
Decorator
Flyweight
Façade
Proxy

Chain of Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Sc
op

e:
 D

om
ai

n
W

he
re

Pa

tt
er

n
Ap

pl
ie

s

√

√
√
√

√

√ √
√

√
√

√
√

√

√
√

http://en.wikipedia.org/wiki/Design_Patterns

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

23

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Extensible expression tree
structure

Composite

Encapsulating variability &
simplifying memory
management

Bridge

Parsing expressions &
creating expression tree

Interpreter &
Builder

Extensible tree operations Iterator & Visitor
Implementing STL iterator
semantics

Prototype

Consolidating user
operations

Command

Consolidating creation of
variabilities for commands,
iterators, etc.

Abstract Factory
& Factory
Method

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

24

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Extensible expression tree
structure

Composite

Encapsulating variability &
simplifying memory
management

Bridge

Parsing expressions &
creating expression tree

Interpreter &
Builder

Extensible tree operations Iterator & Visitor
Implementing STL iterator
semantics

Prototype

Consolidating user
operations

Command

Consolidating creation of
variabilities for commands,
iterators, etc.

Abstract Factory
& Factory
Method

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

25

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Extensible expression tree
structure

Composite

Encapsulating variability &
simplifying memory
management

Bridge

Parsing expressions &
creating expression tree

Interpreter &
Builder

Extensible tree operations Iterator & Visitor
Implementing STL iterator
semantics

Prototype

Consolidating user
operations

Command

Consolidating creation of
variabilities for commands,
iterators, etc.

Abstract Factory
& Factory
Method

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

26

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Extensible expression tree
structure

Composite

Encapsulating variability &
simplifying memory
management

Bridge

Parsing expressions &
creating expression tree

Interpreter &
Builder

Extensible tree operations Iterator & Visitor
Implementing STL iterator
semantics

Prototype

Consolidating user
operations

Command

Consolidating creation of
variabilities for commands,
iterators, etc.

Abstract Factory
& Factory
Method

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

27

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Extensible expression tree
structure

Composite

Encapsulating variability &
simplifying memory
management

Bridge

Parsing expressions &
creating expression tree

Interpreter &
Builder

Extensible tree operations Iterator & Visitor
Implementing STL iterator
semantics

Prototype

Consolidating user
operations

Command

Consolidating creation of
variabilities for commands,
iterators, etc.

Abstract Factory
& Factory
Method

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

28

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Extensible expression tree
structure

Composite

Encapsulating variability &
simplifying memory
management

Bridge

Parsing expressions &
creating expression tree

Interpreter &
Builder

Extensible tree operations Iterator & Visitor
Implementing STL iterator
semantics

Prototype

Consolidating user
operations

Command

Consolidating creation of
variabilities for commands,
iterators, etc.

Abstract Factory
& Factory
Method

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

29

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Extensible expression tree
structure

Composite

Encapsulating variability &
simplifying memory
management

Bridge

Parsing expressions &
creating expression tree

Interpreter &
Builder

Extensible tree operations Iterator & Visitor
Implementing STL iterator
semantics

Prototype

Consolidating user
operations

Command

Consolidating creation of
variabilities for commands,
iterators, etc.

Abstract Factory
& Factory
Method

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

30

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Ensuring correct protocol
for processing commands

State

Structuring the
application event flow

Reactor

Supporting multiple
operation modes

Template Method
& Strategy

Centralizing access to
global resources

Singleton

Eliminating loops via the
STL std::for_each()
algorithm

Adapter

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

31

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Ensuring correct protocol
for processing commands

State

Structuring the
application event flow

Reactor

Supporting multiple
operation modes

Template Method
& Strategy

Centralizing access to
global resources

Singleton

Eliminating loops via the
STL std::for_each()
algorithm

Adapter

See www.dre.vanderbilt.edu/~schmidt/PDF/Reactor.pdf for the Reactor pattern

http://www.dre.vanderbilt.edu/~schmidt/PDF/Reactor.pdf

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

32

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Ensuring correct protocol
for processing commands

State

Structuring the
application event flow

Reactor

Supporting multiple
operation modes

Template Method
& Strategy

Centralizing access to
global resources

Singleton

Eliminating loops via the
STL std::for_each()
algorithm

Adapter

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

33

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Ensuring correct protocol
for processing commands

State

Structuring the
application event flow

Reactor

Supporting multiple
operation modes

Template Method
& Strategy

Centralizing access to
global resources

Singleton

Eliminating loops via the
STL std::for_each()
algorithm

Adapter

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

34

Design Problems & Pattern-Oriented Solutions

Naturally, these patterns apply to more than expression tree processing apps!

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)
Ensuring correct protocol
for processing commands

State

Structuring the
application event flow

Reactor

Supporting multiple
operation modes

Template Method
& Strategy

Centralizing access to
global resources

Singleton

Eliminating loops via the
STL std::for_each()
algorithm

Adapter

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

35

Summary
• GoF patterns provide elements of

reusable object-oriented software
that address limitations with
algorithmic decomposition

	Slide Number 1
	Topics Covered in this Part of the Module
	How to Design an Expression Tree Processing App
	How to Design an Expression Tree Processing App
	How to Design an Expression Tree Processing App
	How to Design an Expression Tree Processing App
	An OO Expression Tree Design Method
	An OO Expression Tree Design Method
	An OO Expression Tree Design Method
	An OO Expression Tree Design Method
	C++ Pattern-Oriented Language/Library Features
	C++ Pattern-Oriented Language/Library Features
	C++ Pattern-Oriented Language/Library Features
	C++ Pattern-Oriented Language/Library Features
	Java Pattern-Oriented Language/Library Features
	Java Pattern-Oriented Language/Library Features
	Summary
	Summary
	Summary
	Slide Number 20
	Topics Covered in this Part of the Module
	Outline of the Design Space for GoF Patterns
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Design Problems & Pattern-Oriented Solutions
	Summary

