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Topics Covered in this Part of the Module 
• Describe the object-oriented 

(OO) expression tree case study 
• Evaluate the limitations with 

algorithmic design techniques 
• Present an OO design for the 

expression tree processing app 
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How to Design an Expression Tree Processing App 
• Apply an Object-Oriented  

(OO) design based on 
modeling classes & objects  
in the application domain 
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Leaf Nodes 
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• Apply an Object-Oriented 
(OO) design based on 
modeling classes & objects  
in the application domain 

• Employ “hierarchical data 
abstraction” where design 
components are based on 
stable class & object roles  
& relationships 
• Rather than functions 

corresponding to actions 

ET_Iterator 

ET_Iterator_Impl 

Pre_Order_ET 
_|Iterator_Impl 
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_Iterator_Impl 
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_Iterator_Impl 

Level_Order_ET 
_Iterator_Impl 

How to Design an Expression Tree Processing App 
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• Apply an Object-Oriented 
(OO) design based on 
modeling classes & objects  
in the application domain 

• Employ “hierarchical data 
abstraction” where design 
components are based on 
stable class & object roles 
& relationships 

• Associate actions with 
specific objects and/or 
classes of objects 
• Emphasize high cohesion  

& low coupling 

ET_Event_Handler 
handle_input() 
prompt_user() 
get_input() 
make_command() 
execute_command() 

Event_Handler 

Verbose_ET_ 
Event_Handler 

prompt_user() 
make_command() 

Succinct_ET_ 
Event_Handler 

prompt_user() 
make_command() 

How to Design an Expression Tree Processing App 
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• Apply an Object-Oriented 
(OO) design based on 
modeling classes & objects  
in the application domain 

• Employ “hierarchical data 
abstraction” where design 
components are based on 
stable class & object roles 
& relationships 

• Associate actions with 
specific objects and/or 
classes of objects 

• Group classes & objects in 
accordance to patterns & 
combine them to form 
frameworks 

Strategy & 
Template Method 

Reactor Singleton 

ET_Command_Factory ET_Event_Handler 

ET_Command 

ET_Context 

Verbose_ET_ 
Event_Handler 

Succinct_ET_ 
Event_Handler 

<< create >> 

Event_Handler Options Reactor 

How to Design an Expression Tree Processing App 
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An OO Expression Tree Design Method 
• Start with object-oriented (OO)  

modeling of the “expression tree”  
application domain 
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Binary 
Nodes 

Unary 
Node 

Leaf Nodes 

An OO Expression Tree Design Method 
• Start with object-oriented (OO)  

modeling of the “expression tree”  
application domain 

• Model a tree as a  
collection of nodes 
 

Ap
pl

ic
at

io
n-

de
pe

nd
en

t  
st

ep
s 

 



GoF Patterns Expression Tree Case Study Douglas C. Schmidt 

9 

• Start with object-oriented (OO)  
modeling of the “expression tree”  
application domain 

An OO Expression Tree Design Method 

• Model a tree as a  
collection of nodes 

• Represent nodes as a 
hierarchy, capturing 
properties of each node 
• e.g., arities 
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• Start with object-oriented (OO)  
modeling of the “expression tree”  
application domain 
 
 
 
 
 
 
 
 
 

• Conduct Scope, Commonality, & Variability analysis to determine 
stable interfaces & extension points 

• Apply “Gang of Four” (GoF) patterns to guide efficient & extensible 
development of framework components 

• Integrate pattern-oriented language/library features w/frameworks Ap
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• Model a tree as a  
collection of nodes 

• Represent nodes as a 
hierarchy, capturing 
properties of each node 
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An OO Expression Tree Design Method 
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en.wikipedia.org/wiki/Design_Patterns has info on “Gang of Four” (GoF) book 

http://en.wikipedia.org/wiki/Design_Patterns
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C++ Pattern-Oriented Language/Library Features 
• Over time, common patterns 

become institutionalized as 
programming language 
features 

Expression_Tree expr_tree = …; 
Print_Visitor print_visitor; 
 
 
 

  

Visitor object (based on 
Visitor pattern) 



GoF Patterns Expression Tree Case Study Douglas C. Schmidt 

12 

Expression_Tree expr_tree = …; 
Print_Visitor print_visitor; 
 
for (Expression_Tree::iterator iter =  
          expr_tree.begin(); 
       iter != expr_tree.end(); 
       ++iter) 
   (*iter).accept(print_visitor); 
 
 
 
  

Traditional STL 
iterator loop 

C++ Pattern-Oriented Language/Library Features 
• Over time, common patterns 

become institutionalized as 
programming language 
features 
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Expression_Tree expr_tree = …; 
Print_Visitor print_visitor; 
 
for (Expression_Tree::iterator iter =  
          expr_tree.begin(); 
       iter != expr_tree.end(); 
       ++iter) 
   (*iter).accept(print_visitor); 
 
std::for_each  
  (expr_tree.begin(), expr_tree.end(), 
   [&print_visitor] 
   (const Expression_Tree &t)  
   { t.accept(print_visitor);}); 
 
 
 

C++11 lambda expression 

C++ Pattern-Oriented Language/Library Features 
• Over time, common patterns 

become institutionalized as 
programming language 
features 
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Expression_Tree expr_tree = …; 
Print_Visitor print_visitor; 
 
for (Expression_Tree::iterator iter =  
          expr_tree.begin(); 
       iter != expr_tree.end(); 
       ++iter) 
   (*iter).accept(print_visitor); 
 
std::for_each  
  (expr_tree.begin(), expr_tree.end(), 
   [&print_visitor] 
   (const Expression_Tree &t)  
   { t.accept(print_visitor);}); 
 
for (auto &iter : expr_tree) 
   iter.accept(print_visitor); 
 
 

C++11 range-based for loop 

See en.wikipedia.org/wiki/C++11 for info on C++11 

C++ Pattern-Oriented Language/Library Features 
• Over time, common patterns 

become institutionalized as 
programming language 
features 

http://en.wikipedia.org/wiki/C++11
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ExpressionTree exprTree = …; 
ETVisitor printVisitor =  
               new PrintVisitor(); 
 
for (ComponentNode node : exprTree)  
    node.accept(printVisitor); 
 
  
 
 
 

Java for-each loop (assumes 
tree implements Iterable) 

Java Pattern-Oriented Language/Library Features 
• Over time, common patterns 

become institutionalized as 
programming language 
features 
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ExpressionTree exprTree = …; 
ETVisitor printVisitor =  
               new PrintVisitor(); 
 
for (ComponentNode node : exprTree)  
    node.accept(printVisitor); 
 
for (Iterator<ExpressionTree> iter =  
       exprTree.iterator(); 
     iter.hasNext();  
     ) 
   iter.next().accept 
           (printVisitor); 
 
 
 

Java Pattern-Oriented Language/Library Features 

Java iterator style 

• Over time, common patterns 
become institutionalized as 
programming language 
features 
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Summary 

Expression_Tree Component_Node 

ET_Visitor 

Evaluation_Visitor 

std::stack 

Print_Visitor 

ET_Iterator ET_Iterator_Impl 

Pre_Order_ET 
_Iterator_Impl 

In_Order_ET 
_Iterator_Impl 

Post_Order_ET 
_Iterator_Impl 

Level_Order_ET 
_Iterator_Impl LQueue 

<< create >> 

<< accept >> • OO designs are characterized  
by structuring software 
architectures around 
objects/classes in domains  
• Rather than on actions 

performed by the  
software 
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Summary 
• OO designs are characterized  

by structuring software 
architectures around 
objects/classes in domains  
• Rather than on actions 

performed by the  
software 

• Systems evolve & functionality 
changes, but well-defined 
objects & class roles & 
relationships are often 
relatively stable over time 
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Summary 
• OO designs are characterized  

by structuring software 
architectures around 
objects/classes in domains  
• Rather than on actions 

performed by the  
software 

• Systems evolve & functionality 
changes, but well-defined 
objects & class roles & 
relationships are often  
relatively stable over time 

• To obtain flexible & reusable 
software, therefore, it’s better 
to base the structure on 
objects/classes rather  
than on actions 
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Topics Covered in this Part of the Module 
• Describe the object-oriented 

(OO) expression tree case study 
• Evaluate the limitations with 

algorithmic design techniques 
• Present an OO design for the 

expression tree processing app 
• Summarize the patterns in  

the expression tree design 
 

Design Problem Pattern(s) 

Extensible expression tree structure  Composite 

Encapsulating variability & simplifying 
memory management  

Bridge 

Parsing expressions & creating 
expression tree  

Interpreter & 
Builder 

Extensible expression tree operations Iterator & Visitor 

Implementing STL iterator semantics  Prototype 

Consolidating user operations  Command 

Consolidating creation of variabilities for 
commands, iterators, etc. 

Abstract Factory & 
Factory Method 

Ensuring correct protocol for commands  State 

Structuring the application event flow  Reactor 

Supporting multiple operation modes Template Method 
& Strategy 

Centralizing access to global resources Singleton 

Eliminating loops via the STL 
std::for_each() algorithm 

Adapter 
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Outline of the Design Space for GoF Patterns 
Abstract the process 

of instantiating 
objects 

Describe how classes & 
objects can be combined to 

form larger structures 

Concerned with 
communication 
between objects 

en.wikipedia.org/wiki/Design_Patterns has info on “Gang of Four” (GoF) book 

Purpose: Reflects What the Pattern Does 
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http://en.wikipedia.org/wiki/Design_Patterns
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 

Leaf 
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Nodes 

Unary 
Node 

Design Problem Pattern(s) 
Ensuring correct protocol 
for processing commands  

State 

Structuring the 
application event flow  

Reactor 

Supporting multiple 
operation modes 

Template Method 
& Strategy 

Centralizing access to 
global resources 

Singleton 

Eliminating loops via the 
STL std::for_each() 
algorithm 

Adapter 
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Design Problems & Pattern-Oriented Solutions 
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Design Problem Pattern(s) 
Ensuring correct protocol 
for processing commands  

State 

Structuring the 
application event flow  
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Supporting multiple 
operation modes 
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& Strategy 

Centralizing access to 
global resources 

Singleton 

Eliminating loops via the 
STL std::for_each() 
algorithm 

Adapter 

See www.dre.vanderbilt.edu/~schmidt/PDF/Reactor.pdf for the Reactor pattern  

http://www.dre.vanderbilt.edu/~schmidt/PDF/Reactor.pdf
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 
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Design Problems & Pattern-Oriented Solutions 

Naturally, these patterns apply to more than expression tree processing apps! 
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Eliminating loops via the 
STL std::for_each() 
algorithm 

Adapter 
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Summary 
• GoF patterns provide elements of 

reusable object-oriented software 
that address limitations with 
algorithmic decomposition 
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