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Topics Covered in this Part of the Module 
• Describe the object-oriented 

(OO) expression tree case study 
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Case Study: Expression Tree Processing App 
Goals 
• Develop an OO expression  

tree processing app using  
patterns  & frameworks 

Design Problem Pattern(s) 

Extensible expression tree structure  Composite 

Encapsulating variability & simplifying 
memory management  

Bridge 

Parsing expressions & creating 
expression tree  

Interpreter & 
Builder 

Extensible expression tree operations Iterator & Visitor 

Implementing STL iterator semantics  Prototype 

Consolidating user operations  Command 

Consolidating creation of variabilities for 
commands, iterators, etc. 

Abstract Factory & 
Factory Method 

Ensuring correct protocol for commands  State 

Structuring application event flow  Reactor 

Supporting multiple operation modes Template Method 
& Strategy 

Centralizing access to global resources Singleton 

Eliminating loops via the STL 
std::for_each() algorithm 

Adapter 

Expression trees are used to remove ambiguity in algebraic expressions 
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Case Study: Expression Tree Processing App 
Goals 
• Develop an OO expression  

tree processing app using  
patterns  & frameworks 

• Compare/contrast non-
object-oriented & object-
oriented approaches 

Tree 
Node 

1 

0|1|2 

Despite decades of OO emphasis, algorithmic decomposition is still common 

Expression_Tree 

Component_Node 

Composite_Binary 
_Node 

Composite_Negate 
_Node 

Composite_ 
Add_Node 

Composite_ 
Multiply_Node 

Composite_ 
Divide_Node 

Composite_ 
Subtract_Node 

Leaf_Node Composite_ 
Unary_Node 
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Case Study: Expression Tree Processing App 
Goals 
• Develop an OO expression  

tree processing app using  
patterns  & frameworks 

• Compare/contrast non-
object-oriented & object-
oriented approaches 

• Demonstrate Scope, 
Commonality, & Variability 
(SCV) analysis in the context 
of a concrete example 
• SCV is a systematic 

software reuse method 
Leaf 

Nodes 

Binary 
Nodes 

Unary 
Node 

www.cs.iastate.edu/~cs309/references/CoplienHoffmanWeiss_CommonalityVariability.pdf  

http://www.cs.iastate.edu/~cs309/references/CoplienHoffmanWeiss_CommonalityVariability.pdf
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Case Study: Expression Tree Processing App 
Goals 
• Develop an OO expression  

tree processing app using  
patterns  & frameworks 

• Compare/contrast non- 
object-oriented & object- 
oriented approaches 

• Demonstrate Scope,  
Commonality, & Variability  
(SCV) analysis in the context  
of a concrete example 

• Illustrate how pattern- 
oriented OO frameworks can  
be implemented in C++  
& Java 

 
 
 

Expression_Tree expr_tree = …; 
Print_Visitor print_visitor; 
 
 
for (auto &iter : expr_tree) 
   iter.accept(print_visitor); 
 
 
ExpressionTree exprTree = …; 
ETVisitor printVisitor =  
                 new PrintVisitor(); 
 
 
for (ComponentNode node : exprTree)  
    node.accept(printVisitor); 
 
 

Java for-each loop 

C++11 range-based for loop 
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Binary 
Nodes 

• Expression trees consist of nodes 
containing operators & operands  

Overview of Expression Tree Processing App 

See en.wikipedia.org/wiki/Binary_expression_tree for expression tree info 

http://en.wikipedia.org/wiki/Binary_expression_tree
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Binary 
Nodes 

Unary 
Node 

• Expression trees consist of nodes 
containing operators & operands  
• Operators are interior nodes in 

the tree  
• i.e., binary & unary nodes 

 

Overview of Expression Tree Processing App 
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Leaf 
Nodes 

Binary 
Nodes 

Unary 
Node 

• Expression trees consist of nodes 
containing operators & operands  
• Operators are interior nodes in 

the tree  
• i.e., binary & unary nodes 

• Operands are exterior nodes in 
the tree  
• i.e., leaf nodes 

 

Overview of Expression Tree Processing App 
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Leaf 
Nodes 

Binary 
Operators 

Unary 
Operator 

• Expression trees consist of nodes 
containing operators & operands       

• Operators have different precedence 
levels, different associativities, & 
different arities, e.g.:   

Overview of Expression Tree Processing App 
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Leaf 
Nodes 

Binary 
Operators 

Unary 
Operator 

• Expression trees consist of nodes 
containing operators & operands       

• Operators have different precedence 
levels, different associativities, & 
different arities, e.g.:   
• The multiplication operator has 

two arguments, whereas unary 
minus operator has only one   

Overview of Expression Tree Processing App 
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Leaf 
Nodes 

Binary 
Operators 

Unary 
Operator 

• Expression trees consist of nodes 
containing operators & operands       

• Operators have different precedence 
levels, different associativities, & 
different arities, e.g.:   
• The multiplication operator has 

two arguments, whereas unary 
minus operator has only one   

• Operator locations in the tree 
unambiguously designate  
precedence 

Overview of Expression Tree Processing App 
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Integer 
Operands 

Binary 
Operators 

Unary 
Operator 

• Expression trees consist of nodes 
containing operators & operands       

• Operators have different precedence 
levels, different associativities, & 
different arities   

• Operands can be integers, doubles,                                                          
variables, etc. 
• We'll just handle integers in this                                                        

example, though it can easily be  
extended 

Overview of Expression Tree Processing App 
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• Trees may be “evaluated” via different 
traversal orders, e.g., 
• “in-order iterator” = -5*(3+4) 
• “pre-order iterator” = *-5+34 
• “post-order iterator” = 5-34+* 
• “level-order iterator” = *-+534 

Overview of Expression Tree Processing App 

See en.wikipedia.org/wiki/Binary_expression_tree#Traversal for more info 

http://en.wikipedia.org/wiki/Binary_expression_tree
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• Trees may be “evaluated” via different 
traversal orders, e.g., 
• “in-order iterator” = -5*(3+4) 
• “pre-order iterator” = *-5+34 
• “post-order iterator” = 5-34+* 
• “level-order iterator” = *-+534 

• The evaluation step may perform 
various actions, e.g.: 
• Print contents of expression tree 
• Return the “value" of the  

expression tree 
• Perform semantic analysis &                                                               

optimization 
• Generate code 
• etc. 

Overview of Expression Tree Processing App 

1. S = [5]    push(node.item()) 
2. S = [-5]    push(-pop()) 
3. S = [-5, 3]      push(node.item()) 
4. S = [-5, 3, 4]  push(node.item()) 
5. S = [-5, 7]      push(pop()+pop()) 
6. S = [-35]        push(pop()*pop()) 
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Summary 

% tree-traversal 
> 1+4*3/2 
7 
> (8/4) * 3 + 1 
7 
^D 
 
 
 
 
 

 
% tree-traversal -v 
format [in-order] 
expr [expression] 
print [in-order|pre-order|post- 
       order|level-order] 
eval [post-order] 
quit 
> format in-order 
> expr 1+4*3/2 
> print post-order 
143*2/+ 
> eval post-order 
7 
> quit 

• The expression tree processing app can be run in multiple modes, e.g.: 

• “Succinct mode” 
• “Verbose mode” 
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Topics Covered in this Part of the Module 
• Describe the object-oriented 

(OO) expression tree case study 
• Evaluate the limitations with 

algorithmic design techniques 

Start 
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Build Tree 
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No 
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How Not to Design an Expression Tree Application 
Start 

Initialize 

Read Expr 

Prompt User 

Build Tree 

Process Tree 

End  

EOF? 

Yes 

No 

B 

A 

• Apply algorithmic decomposition 
• Top-down design based on the 

actions performed by the 
system 
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How Not to Design an Expression Tree Application 
Start 

Print Tree 

Initialize 

Read Expr 

Prompt User 

Build Tree 

Process Tree 

Eval Tree 

End  

EOF? 

B 

Print? 

Eval? 

Yes 

Yes 

No 

No 

Yes 

No 

B 

Verbose 
Prompt 

Succinct 
Prompt 

Verbose? 
Yes 

No 

A 

A • Apply algorithmic decomposition 
• Top-down design based on the 

actions performed by the 
system 

• Generally follows a “divide & 
conquer” strategy based on 
the actions 
• i.e., general actions are 

iteratively/recursively 
decomposed into more 
specific ones 
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• Apply algorithmic decomposition 
• Top-down design based on the 

actions performed by the 
system 

• Generally follows a “divide & 
conquer” strategy based on 
the actions 
• i.e., general actions are 

iteratively/recursively 
decomposed into more 
specific ones 

• Primary design components 
correspond to processing 
steps in execution sequence 
• e.g., C functions 
 

typedef struct Tree_Node { 
  ... 
} Tree_Node; 
 
 
void prompt_user(int verbose); 
char *read_expr(FILE *fp); 
Tree_Node *build_tree 
              (const char *expr); 
void process_tree 
     (Tree_Node *root, FILE *fp); 
void eval_tree  
     (Tree_Node *root, FILE *fp); 
void print_tree  
     (Tree_Node *root, FILE *fp); 
... 
   

How Not to Design an Expression Tree Application 

We’ll explore this shortly 

We’ll explore this shortly 
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Type tag 

Reference count 

Node  
child(ren) 

Node value 

• A typical algorithmic decomposition for implementing expression trees 
would use a C struct/union to represent the main data structure 

 
typedef struct Tree_Node { 
  enum { NUM, UNARY, BINARY } tag_; 
  short use_;  
  union {   
    char op_[2]; 
    int num_; 
  } o; 
#define num_ o.num_ 
#define op_  o.op_ 
  union {   
    struct Tree_Node *unary_; 
    struct { struct Tree_Node *l_,  
             *r_;} binary_; 
  } c; 
#define unary_ c.unary_ 
#define binary_ c.binary_ 
} Tree_Node; 
  

Algorithmic Decomposition of Expression Tree 
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• A typical algorithmic decomposition for implementing expression trees 
would use a C struct/union to represent the main data structure 

 
typedef struct Tree_Node { 
  enum { NUM, UNARY, BINARY } tag_; 
  short use_;  
  union {   
    char op_[2]; 
    int num_; 
  } o; 
#define num_ o.num_ 
#define op_  o.op_ 
  union {   
    struct Tree_Node *unary_; 
    struct { struct Tree_Node *l_,  
             *r_;} binary_; 
  } c; 
#define unary_ c.unary_ 
#define binary_ c.binary_ 
} Tree_Node; 
  

Tree 
Node 

1 

0|1|2 

“Class” 
Relationships 

Memory 
Layout 

Algorithmic Decomposition of Expression Tree 

tag_ 

use_ 

op_ 

num_ 

unary_ 

binary_ 
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• A typical algorithmic decomposition uses a switch statement & a recursive 
function to build & evaluate a tree, e.g.: 

void print_tree(Tree_Node *root, FILE *fp) { 
  switch(root->tag_) {  
  case NUM: fprintf(fp, "%d", root->num_); break; 
  case UNARY: 
    fprintf(fp, "(%s", root->op_[0]); 
    print_tree(root->unary_, fp); 
    fprintf(fp, ")"); break; 
  case BINARY: 
    fprintf(fp, "("); 
    print_tree(root->binary_.l_, fp);  
    fprintf(fp, "%s", root->op_[0]); 
    print_tree(root->binary_.r_, fp);  
    fprintf(fp, ")"); break; 
  ... 
}   

Switch on type tag 

Algorithmic Decomposition of Expression Tree 
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• A typical algorithmic decomposition uses a switch statement & a recursive 
function to build & evaluate a tree, e.g.: 

void print_tree(Tree_Node *root, FILE *fp) { 
  switch(root->tag_) { 
  case NUM: fprintf(fp, "%d", root->num_); break; 
  case UNARY: 
    fprintf(fp, "(%s", root->op_[0]); 
    print_tree(root->unary_, fp); 
    fprintf(fp, ")"); break; 
  case BINARY: 
    fprintf(fp, "("); 
    print_tree(root->binary_.l_, fp);  
    fprintf(fp, "%s", root->op_[0]); 
    print_tree(root->binary_.r_, fp);  
    fprintf(fp, ")"); break; 
  ... 
}   

Algorithmic Decomposition of Expression Tree 
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• A typical algorithmic decomposition uses a switch statement & a recursive 
function to build & evaluate a tree, e.g.: 

void print_tree(Tree_Node *root, FILE *fp) { 
  switch(root->tag_) { 
  case NUM: fprintf(fp, "%d", root->num_); break; 
  case UNARY: 
    fprintf(fp, "(%s", root->op_[0]); 
    print_tree(root->unary_, fp); 
    fprintf(fp, ")"); break; 
  case BINARY: 
    fprintf(fp, "("); 
    print_tree(root->binary_.l_, fp);  
    fprintf(fp, "%s", root->op_[0]); 
    print_tree(root->binary_.r_, fp);  
    fprintf(fp, ")"); break; 
  ... 
}   

Recursive call 

Algorithmic Decomposition of Expression Tree 
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• A typical algorithmic decomposition uses a switch statement & a recursive 
function to build & evaluate a tree, e.g.: 

void print_tree(Tree_Node *root, FILE *fp) { 
  switch(root->tag_) { 
  case NUM: fprintf(fp, "%d", root->num_); break; 
  case UNARY: 
    fprintf(fp, "(%s", root->op_[0]); 
    print_tree(root->unary_, fp); 
    fprintf(fp, ")"); break; 
  case BINARY: 
    fprintf(fp, "("); 
    print_tree(root->binary_.l_, fp);  
    fprintf(fp, "%s", root->op_[0]); 
    print_tree(root->binary_.r_, fp);  
    fprintf(fp, ")"); break; 
  ... 
}   

Recursive call 

Recursive call 

Algorithmic Decomposition of Expression Tree 
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Summary 
• Limitations with algorithmic decomposition 

• Little/no encapsulation 
Implementation details 

available to clients 

Small changes ripple 
through entire program 

Use of macros pollutes 
global namespace 

typedef struct Tree_Node { 
  enum { NUM, UNARY, BINARY } tag_; 
  short use_;  
  union {   
    char op_[2]; 
    int num_; 
  } o; 
#define num_ o.num_ 
#define op_  o.op_ 
  union {   
    struct Tree_Node *unary_; 
    struct { struct Tree_Node *l_,  
             *r_;} binary_; 
  } c; 
#define unary_ c.unary_ 
#define binary_ c.binary_ 
} Tree_Node;  
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• Limitations with algorithmic decomposition 
• Incomplete modeling of application domain 

 

Tight coupling 
between 

nodes/edges 
in union 

Wastes space by 
making worst-case 
assumptions wrt 
structs & unions 

Summary 

tag_ 

use_ 

op_ 

num_ 

unary_ 

binary_ 

typedef struct Tree_Node { 
  enum { NUM, UNARY, BINARY } tag_; 
  short use_;  
  union {   
    char op_[2]; 
    int num_; 
  } o; 
#define num_ o.num_ 
#define op_  o.op_ 
  union {   
    struct Tree_Node *unary_; 
    struct { struct Tree_Node *l_,  
             *r_;} binary_; 
  } c; 
#define unary_ c.unary_ 
#define binary_ c.binary_ 
} Tree_Node;  
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Tree_Node data structure  
is “passive” & functions 

do all the real work 

Easy to make mistakes 
when switching on type tags 

Summary 

void print_tree(Tree_Node *root, FILE *fp) { 
  switch(root->tag_) {   
  case NUM: fprintf(fp, "%d", root->num_); break; 
  case UNARY: 
    fprintf(fp, "(%s", root->op_[0]); 
    print_tree(root->unary_, fp); 
    fprintf(fp, ")"); break; 
  case BINARY: 
    fprintf(fp, "("); 
    print_tree(root->binary_.l_, fp);  
    fprintf(fp, "%s", root->op_[0]); 
    print_tree(root->binary_.r_, fp);  
    fprintf(fp, ")"); break; 
  ... 
}   

• Limitations with algorithmic decomposition 
• Complexity in (variable) algorithms rather than (stable) structure  

 

Tailoring the app for 
specific requirements & 
specifications impedes 
reuse & complicates 
software sustainment  

Overcoming limitations requires rethinking modeling, design, & implementation 
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