
A Case Study of “Gang of Four”
(GoF) Patterns: Part 1

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

2

Leaf
Nodes

Binary
Nodes

Unary
Node

Topics Covered in this Part of the Module
• Describe the object-oriented

(OO) expression tree case study

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

3

Case Study: Expression Tree Processing App
Goals
• Develop an OO expression

tree processing app using
patterns & frameworks

Design Problem Pattern(s)

Extensible expression tree structure Composite

Encapsulating variability & simplifying
memory management

Bridge

Parsing expressions & creating
expression tree

Interpreter &
Builder

Extensible expression tree operations Iterator & Visitor

Implementing STL iterator semantics Prototype

Consolidating user operations Command

Consolidating creation of variabilities for
commands, iterators, etc.

Abstract Factory &
Factory Method

Ensuring correct protocol for commands State

Structuring application event flow Reactor

Supporting multiple operation modes Template Method
& Strategy

Centralizing access to global resources Singleton

Eliminating loops via the STL
std::for_each() algorithm

Adapter

Expression trees are used to remove ambiguity in algebraic expressions

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

4

Case Study: Expression Tree Processing App
Goals
• Develop an OO expression

tree processing app using
patterns & frameworks

• Compare/contrast non-
object-oriented & object-
oriented approaches

Tree
Node

1

0|1|2

Despite decades of OO emphasis, algorithmic decomposition is still common

Expression_Tree

Component_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node Composite_
Unary_Node

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

5

Case Study: Expression Tree Processing App
Goals
• Develop an OO expression

tree processing app using
patterns & frameworks

• Compare/contrast non-
object-oriented & object-
oriented approaches

• Demonstrate Scope,
Commonality, & Variability
(SCV) analysis in the context
of a concrete example
• SCV is a systematic

software reuse method
Leaf

Nodes

Binary
Nodes

Unary
Node

www.cs.iastate.edu/~cs309/references/CoplienHoffmanWeiss_CommonalityVariability.pdf

http://www.cs.iastate.edu/~cs309/references/CoplienHoffmanWeiss_CommonalityVariability.pdf

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

6

Case Study: Expression Tree Processing App
Goals
• Develop an OO expression

tree processing app using
patterns & frameworks

• Compare/contrast non-
object-oriented & object-
oriented approaches

• Demonstrate Scope,
Commonality, & Variability
(SCV) analysis in the context
of a concrete example

• Illustrate how pattern-
oriented OO frameworks can
be implemented in C++
& Java

Expression_Tree expr_tree = …;
Print_Visitor print_visitor;

for (auto &iter : expr_tree)
 iter.accept(print_visitor);

ExpressionTree exprTree = …;
ETVisitor printVisitor =
 new PrintVisitor();

for (ComponentNode node : exprTree)
 node.accept(printVisitor);

Java for-each loop

C++11 range-based for loop

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

7

Binary
Nodes

• Expression trees consist of nodes
containing operators & operands

Overview of Expression Tree Processing App

See en.wikipedia.org/wiki/Binary_expression_tree for expression tree info

http://en.wikipedia.org/wiki/Binary_expression_tree

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

8

Binary
Nodes

Unary
Node

• Expression trees consist of nodes
containing operators & operands
• Operators are interior nodes in

the tree
• i.e., binary & unary nodes

Overview of Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

9

Leaf
Nodes

Binary
Nodes

Unary
Node

• Expression trees consist of nodes
containing operators & operands
• Operators are interior nodes in

the tree
• i.e., binary & unary nodes

• Operands are exterior nodes in
the tree
• i.e., leaf nodes

Overview of Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

10

Leaf
Nodes

Binary
Operators

Unary
Operator

• Expression trees consist of nodes
containing operators & operands

• Operators have different precedence
levels, different associativities, &
different arities, e.g.:

Overview of Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

11

Leaf
Nodes

Binary
Operators

Unary
Operator

• Expression trees consist of nodes
containing operators & operands

• Operators have different precedence
levels, different associativities, &
different arities, e.g.:
• The multiplication operator has

two arguments, whereas unary
minus operator has only one

Overview of Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

12

Leaf
Nodes

Binary
Operators

Unary
Operator

• Expression trees consist of nodes
containing operators & operands

• Operators have different precedence
levels, different associativities, &
different arities, e.g.:
• The multiplication operator has

two arguments, whereas unary
minus operator has only one

• Operator locations in the tree
unambiguously designate
precedence

Overview of Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

13

Integer
Operands

Binary
Operators

Unary
Operator

• Expression trees consist of nodes
containing operators & operands

• Operators have different precedence
levels, different associativities, &
different arities

• Operands can be integers, doubles,
variables, etc.
• We'll just handle integers in this

example, though it can easily be
extended

Overview of Expression Tree Processing App

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

14

• Trees may be “evaluated” via different
traversal orders, e.g.,
• “in-order iterator” = -5*(3+4)
• “pre-order iterator” = *-5+34
• “post-order iterator” = 5-34+*
• “level-order iterator” = *-+534

Overview of Expression Tree Processing App

See en.wikipedia.org/wiki/Binary_expression_tree#Traversal for more info

http://en.wikipedia.org/wiki/Binary_expression_tree

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

15

• Trees may be “evaluated” via different
traversal orders, e.g.,
• “in-order iterator” = -5*(3+4)
• “pre-order iterator” = *-5+34
• “post-order iterator” = 5-34+*
• “level-order iterator” = *-+534

• The evaluation step may perform
various actions, e.g.:
• Print contents of expression tree
• Return the “value" of the

expression tree
• Perform semantic analysis &

optimization
• Generate code
• etc.

Overview of Expression Tree Processing App

1. S = [5] push(node.item())
2. S = [-5] push(-pop())
3. S = [-5, 3] push(node.item())
4. S = [-5, 3, 4] push(node.item())
5. S = [-5, 7] push(pop()+pop())
6. S = [-35] push(pop()*pop())

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

16

Summary

% tree-traversal
> 1+4*3/2
7
> (8/4) * 3 + 1
7
^D

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-
 order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+4*3/2
> print post-order
143*2/+
> eval post-order
7
> quit

• The expression tree processing app can be run in multiple modes, e.g.:

• “Succinct mode”
• “Verbose mode”

A Case Study of “Gang of Four”
(GoF) Patterns: Part 2

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

18

Topics Covered in this Part of the Module
• Describe the object-oriented

(OO) expression tree case study
• Evaluate the limitations with

algorithmic design techniques

Start

Initialize

Read Expr

Prompt User

Build Tree

Process Tree

End

EOF?

Yes

No

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

19

How Not to Design an Expression Tree Application
Start

Initialize

Read Expr

Prompt User

Build Tree

Process Tree

End

EOF?

Yes

No

B

A

• Apply algorithmic decomposition
• Top-down design based on the

actions performed by the
system

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

20

How Not to Design an Expression Tree Application
Start

Print Tree

Initialize

Read Expr

Prompt User

Build Tree

Process Tree

Eval Tree

End

EOF?

B

Print?

Eval?

Yes

Yes

No

No

Yes

No

B

Verbose
Prompt

Succinct
Prompt

Verbose?
Yes

No

A

A • Apply algorithmic decomposition
• Top-down design based on the

actions performed by the
system

• Generally follows a “divide &
conquer” strategy based on
the actions
• i.e., general actions are

iteratively/recursively
decomposed into more
specific ones

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

21

• Apply algorithmic decomposition
• Top-down design based on the

actions performed by the
system

• Generally follows a “divide &
conquer” strategy based on
the actions
• i.e., general actions are

iteratively/recursively
decomposed into more
specific ones

• Primary design components
correspond to processing
steps in execution sequence
• e.g., C functions

typedef struct Tree_Node {
 ...
} Tree_Node;

void prompt_user(int verbose);
char *read_expr(FILE *fp);
Tree_Node *build_tree
 (const char *expr);
void process_tree
 (Tree_Node *root, FILE *fp);
void eval_tree
 (Tree_Node *root, FILE *fp);
void print_tree
 (Tree_Node *root, FILE *fp);
...

How Not to Design an Expression Tree Application

We’ll explore this shortly

We’ll explore this shortly

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

22

Type tag

Reference count

Node
child(ren)

Node value

• A typical algorithmic decomposition for implementing expression trees
would use a C struct/union to represent the main data structure

typedef struct Tree_Node {
 enum { NUM, UNARY, BINARY } tag_;
 short use_;
 union {
 char op_[2];
 int num_;
 } o;
#define num_ o.num_
#define op_ o.op_
 union {
 struct Tree_Node *unary_;
 struct { struct Tree_Node *l_,
 *r_;} binary_;
 } c;
#define unary_ c.unary_
#define binary_ c.binary_
} Tree_Node;

Algorithmic Decomposition of Expression Tree

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

23

• A typical algorithmic decomposition for implementing expression trees
would use a C struct/union to represent the main data structure

typedef struct Tree_Node {
 enum { NUM, UNARY, BINARY } tag_;
 short use_;
 union {
 char op_[2];
 int num_;
 } o;
#define num_ o.num_
#define op_ o.op_
 union {
 struct Tree_Node *unary_;
 struct { struct Tree_Node *l_,
 *r_;} binary_;
 } c;
#define unary_ c.unary_
#define binary_ c.binary_
} Tree_Node;

Tree
Node

1

0|1|2

“Class”
Relationships

Memory
Layout

Algorithmic Decomposition of Expression Tree

tag_

use_

op_

num_

unary_

binary_

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

24

• A typical algorithmic decomposition uses a switch statement & a recursive
function to build & evaluate a tree, e.g.:

void print_tree(Tree_Node *root, FILE *fp) {
 switch(root->tag_) {
 case NUM: fprintf(fp, "%d", root->num_); break;
 case UNARY:
 fprintf(fp, "(%s", root->op_[0]);
 print_tree(root->unary_, fp);
 fprintf(fp, ")"); break;
 case BINARY:
 fprintf(fp, "(");
 print_tree(root->binary_.l_, fp);
 fprintf(fp, "%s", root->op_[0]);
 print_tree(root->binary_.r_, fp);
 fprintf(fp, ")"); break;
 ...
}

Switch on type tag

Algorithmic Decomposition of Expression Tree

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

25

• A typical algorithmic decomposition uses a switch statement & a recursive
function to build & evaluate a tree, e.g.:

void print_tree(Tree_Node *root, FILE *fp) {
 switch(root->tag_) {
 case NUM: fprintf(fp, "%d", root->num_); break;
 case UNARY:
 fprintf(fp, "(%s", root->op_[0]);
 print_tree(root->unary_, fp);
 fprintf(fp, ")"); break;
 case BINARY:
 fprintf(fp, "(");
 print_tree(root->binary_.l_, fp);
 fprintf(fp, "%s", root->op_[0]);
 print_tree(root->binary_.r_, fp);
 fprintf(fp, ")"); break;
 ...
}

Algorithmic Decomposition of Expression Tree

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

26

• A typical algorithmic decomposition uses a switch statement & a recursive
function to build & evaluate a tree, e.g.:

void print_tree(Tree_Node *root, FILE *fp) {
 switch(root->tag_) {
 case NUM: fprintf(fp, "%d", root->num_); break;
 case UNARY:
 fprintf(fp, "(%s", root->op_[0]);
 print_tree(root->unary_, fp);
 fprintf(fp, ")"); break;
 case BINARY:
 fprintf(fp, "(");
 print_tree(root->binary_.l_, fp);
 fprintf(fp, "%s", root->op_[0]);
 print_tree(root->binary_.r_, fp);
 fprintf(fp, ")"); break;
 ...
}

Recursive call

Algorithmic Decomposition of Expression Tree

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

27

• A typical algorithmic decomposition uses a switch statement & a recursive
function to build & evaluate a tree, e.g.:

void print_tree(Tree_Node *root, FILE *fp) {
 switch(root->tag_) {
 case NUM: fprintf(fp, "%d", root->num_); break;
 case UNARY:
 fprintf(fp, "(%s", root->op_[0]);
 print_tree(root->unary_, fp);
 fprintf(fp, ")"); break;
 case BINARY:
 fprintf(fp, "(");
 print_tree(root->binary_.l_, fp);
 fprintf(fp, "%s", root->op_[0]);
 print_tree(root->binary_.r_, fp);
 fprintf(fp, ")"); break;
 ...
}

Recursive call

Recursive call

Algorithmic Decomposition of Expression Tree

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

28

Summary
• Limitations with algorithmic decomposition

• Little/no encapsulation
Implementation details

available to clients

Small changes ripple
through entire program

Use of macros pollutes
global namespace

typedef struct Tree_Node {
 enum { NUM, UNARY, BINARY } tag_;
 short use_;
 union {
 char op_[2];
 int num_;
 } o;
#define num_ o.num_
#define op_ o.op_
 union {
 struct Tree_Node *unary_;
 struct { struct Tree_Node *l_,
 *r_;} binary_;
 } c;
#define unary_ c.unary_
#define binary_ c.binary_
} Tree_Node;

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

29

• Limitations with algorithmic decomposition
• Incomplete modeling of application domain

Tight coupling
between

nodes/edges
in union

Wastes space by
making worst-case
assumptions wrt
structs & unions

Summary

tag_

use_

op_

num_

unary_

binary_

typedef struct Tree_Node {
 enum { NUM, UNARY, BINARY } tag_;
 short use_;
 union {
 char op_[2];
 int num_;
 } o;
#define num_ o.num_
#define op_ o.op_
 union {
 struct Tree_Node *unary_;
 struct { struct Tree_Node *l_,
 *r_;} binary_;
 } c;
#define unary_ c.unary_
#define binary_ c.binary_
} Tree_Node;

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

30

Tree_Node data structure
is “passive” & functions

do all the real work

Easy to make mistakes
when switching on type tags

Summary

void print_tree(Tree_Node *root, FILE *fp) {
 switch(root->tag_) {
 case NUM: fprintf(fp, "%d", root->num_); break;
 case UNARY:
 fprintf(fp, "(%s", root->op_[0]);
 print_tree(root->unary_, fp);
 fprintf(fp, ")"); break;
 case BINARY:
 fprintf(fp, "(");
 print_tree(root->binary_.l_, fp);
 fprintf(fp, "%s", root->op_[0]);
 print_tree(root->binary_.r_, fp);
 fprintf(fp, ")"); break;
 ...
}

• Limitations with algorithmic decomposition
• Complexity in (variable) algorithms rather than (stable) structure

Tailoring the app for
specific requirements &
specifications impedes
reuse & complicates
software sustainment

Overcoming limitations requires rethinking modeling, design, & implementation

	Slide Number 1
	Topics Covered in this Part of the Module
	Case Study: Expression Tree Processing App
	Case Study: Expression Tree Processing App
	Case Study: Expression Tree Processing App
	Case Study: Expression Tree Processing App
	Overview of Expression Tree Processing App
	Overview of Expression Tree Processing App
	Overview of Expression Tree Processing App
	Overview of Expression Tree Processing App
	Overview of Expression Tree Processing App
	Overview of Expression Tree Processing App
	Overview of Expression Tree Processing App
	Overview of Expression Tree Processing App
	Overview of Expression Tree Processing App
	Summary
	Slide Number 17
	Topics Covered in this Part of the Module
	How Not to Design an Expression Tree Application
	How Not to Design an Expression Tree Application
	How Not to Design an Expression Tree Application
	Algorithmic Decomposition of Expression Tree
	Algorithmic Decomposition of Expression Tree
	Algorithmic Decomposition of Expression Tree
	Algorithmic Decomposition of Expression Tree
	Algorithmic Decomposition of Expression Tree
	Algorithmic Decomposition of Expression Tree
	Summary
	Summary
	Summary

