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• Describe the object-oriented 
(OO) expression tree case study 

• Evaluate the limitations with 
algorithmic design techniques 

• Present an OO design for the 
expression tree processing app 

• Summarize the patterns in  
the expression tree design 

• Explore patterns for  
• Tree structure & access 
• Tree creation 
• Tree traversal 
• Commands & factories 
• Command ordering protocols 
 
 
 
 
 
 

Topics Covered in this Part of the Module 

format() 

make_tree() 

print() 

eval() make_tree() 

format() 

quit() 
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Overview of a Command Protocol Pattern 

Purpose: Ensure user commands are performed in the correct order 

State 

ET_Context ET_State 

Uninitialized 
_State 

Pre_Order_ 
Initialized_State 

Post_Order_ 
Initialized_State 

In_Order_ 
Initialized_State 

Level_Order_ 
Initialized_State 

ET_Interpreter 
<< use >> 

Pre_Order_ 
Uninitialized_State 

Post_Order_ 
Uninitialized_State 

In_Order_ 
Uninitialized_State 

Level_Order_ 
Uninitialized_State 

This pattern uses design of classes to explicitly order user commands correctly 
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% tree-traversal -v 
format [in-order] 
expr [expression] 
print [in-order|pre-order|post- 
       order|level-order] 
eval [post-order] 
quit 
> format in-order 
> print in-order 
Error: ET_State::print called in 
invalid state 

Problem: Ensuring Correct Command Protocol 
Goals 
• Ensure that users follow 

the correct protocol when 
entering commands 

Protocol 
violation 
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Problem: Ensuring Correct Command Protocol 
Goals 
• Ensure that users follow 

the correct protocol when 
entering commands 

Constraints/forces 
• Must consider context of 

previous commands to 
determine protocol 
conformance, e.g., 
• format must be called 

first 
• expr must be called 

before print or eval 
• print & eval can be 

called in any order 

% tree-traversal -v 
format [in-order] 
expr [expression] 
print [in-order|pre-order|post- 
       order|level-order] 
eval [post-order] 
quit 
> format in-order 
> print in-order 
Error: ET_State::print called in 
invalid state 

Protocol 
violation 
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Uninitialized 
State 

Solution: Encapsulate Command History as States
  • Handling user commands  

depends on history of  
prior commands 

• This history can be  
represented as a  
state machine 
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Uninitialized 
State 

Solution: Encapsulate Command History as States
  • Handling user commands  

depends on history of  
prior commands 

• This history can be  
represented as a  
state machine 
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Uninitialized 
State 
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Uninitialized 
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Solution: Encapsulate Command History as States
  • Handling user commands  

depends on history of  
prior commands 

• This history can be  
represented as a  
state machine 
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Uninitialized 
State 

*_Order_ 
Uninitialized 

State 

format() 

make_tree() 

print() eval() 

make_tree() 

format() 

quit() 

*_Order_ 
Initialized 

State 

Solution: Encapsulate Command History as States
  

ET_Context also encapsulates variability & simplifies memory management 

• Handling user commands  
depends on history of  
prior commands 

• This history can be  
represented as a  
state machine 

• The state machine can be  
encoded using various  
subclasses that enforce the  
correct protocol for user  
commands  
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ET_Context Class Interface 
• Interface used to ensure commands are invoked according to correct protocol 

Interface 

• Commonality: Provides a common interface for ensuring that 
expression tree commands are invoked according to the correct protocol 

• Variability: The implementations—& correct functioning—of the 
expression tree commands can vary depending on the requested 
operations & the current state 

void  format(const std::string &new_format) 
void  make_tree(const std::string &expression) 
void  print(const std::string &format) 
void  evaluate(const std::string &format) 

... 
ET_State *  state() const  

void  state(ET_State *new_state) 
Expression_Tree &  tree() 

void  tree(const Expression_Tree &new_tree) 

These methods correspond to user commands 

Setter/getter for 
ET_State subclasses 

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
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ET_State Class Interface 
• Implementation used to define the various states that affect how users 

commands are processed 

virtual void  format(ET_Context &context,  
       const std::string &new_format) 

virtual void  make_tree(ET_Context &context,  
          const std::string &expression) 

virtual void  print(ET_Context &context,  
      const std::string &format) 

virtual void  evaluate(ET_Context &context,  
         const std::string &format) 

Interface 
These methods are delegated from ET_Context methods 

• Commonality: Provides a common interface for ensuring that 
expression tree commands are invoked according to the correct protocol 

• Variability: The implementations—& correct functioning—of the 
expression tree commands can vary depending on the requested 
operations & the current state 

http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
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State                            GoF Object Behavioral 
Intent 
• Allow an object to alter its behavior when its internal state changes—the 

object will appear to change its class 
Applicability 
• When an object must change its behavior at run-time depending on 

which state it is in  
• When several operations have the same large multipart conditional 

structure that depends on the object's state  

Structure 

e.g., ET_Context 

e.g., ET_State 

e.g., Uninitialized_State, 
Pre_Order_Uninitialized_State, 
Pre_Order_Initialized_State, etc. 
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State                            GoF Object Behavioral 
State example in C++ 

• Allows ET_Context object to alter its behavior when its state changes 
 
void 
ET_Context::make_tree(const std::string &expression) {  
  state_->make_tree(*this, expression);  
} 
 
class Uninitialized_State : public State  { 
public: 
  virtual void make_tree(ET_Context &tc,  
                          const std::string &expr)  
  { throw Invalid_State("make_tree called in invalid state"); } 
... 
 It’s invalid to call make_tree() 

in this state 

This method delegates to the ET_State object 



GoF Patterns Expression Tree Case Study Douglas C. Schmidt 

17 

State                            GoF Object Behavioral 
State example in C++ 

• Allows ET_Context object to alter its behavior when its state changes 
 
void 
ET_Context::make_tree(const std::string &expression) {  
  state_->make_tree(*this, expression);  
} 

class In_Order_Uninitialized_State : public Uninitialized_State {  
public: 
 
  virtual void make_tree(ET_Context &et_context,  
                         const std::string &expr) { 
    ET_Interpreter interp;  
    ET_Interpreter_Context interp_context; 
 
    et_context.tree(interp.interpret (interp_context, expr)); 
    et_context.state(new In_Order_Initialized_State); 
  } 
... 
 

Calling make_tree() in this state initializes expression tree 

Transition to the new state 

This method delegates to the ET_State object 
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Consequences 
+ It localizes state-specific behavior & 

partitions behavior for different states  
+ It makes state transitions explicit  
+ State objects can be shared 
– Can result in lots of subclasses that 

are hard to understand 

State                            GoF Object Behavioral 
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Consequences 
+ It localizes state-specific behavior & 

partitions behavior for different states  
+ It makes state transitions explicit  
+ State objects can be shared 
– Can result in lots of subclasses that 

are hard to understand 

Implementation 
• Who defines state transitions? 
• Consider using table-based 

alternatives 
• Creating & destroying state objects 

State                            GoF Object Behavioral 
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Consequences 
+ It localizes state-specific behavior & 

partitions behavior for different states  
+ It makes state transitions explicit  
+ State objects can be shared 
– Can result in lots of subclasses that 

are hard to understand 

Implementation 
• Who defines state transitions? 
• Consider using table-based 

alternatives 
• Creating & destroying state objects 

Known Uses 
• The State pattern & its 

application to TCP connection 
protocols are characterized by 
Ralph Johnson & Johnny Zweig in 
their article “Delegation in C++,” 
Journal of Object-Oriented 
Programming, 4(11):22-35, 
November 1991 

• Unidraw & Hotdraw drawing tools 

State                            GoF Object Behavioral 
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Summary of State Pattern 

This pattern uses design of classes to explicitly order user commands correctly 

State 

ET_Context ET_State 

Uninitialized 
_State 

Pre_Order_ 
Initialized_State 

Post_Order_ 
Initialized_State 

In_Order_ 
Initialized_State 

Level_Order_ 
Initialized_State 

ET_Interpreter 
<< use >> 

State ensures user commands are performed in the correct order 

Pre_Order_ 
Uninitialized_State 

Post_Order_ 
Uninitialized_State 

In_Order_ 
Uninitialized_State 

Level_Order_ 
Uninitialized_State 
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Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvements over 

the original algorithmic 
decomposition 
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Leaf_Node Composite_ 
Unary_Node 
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Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvements over 
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• Much more modular 

& extensible 
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Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvements over 

the original algorithmic 
decomposition 
• Much more modular 

& extensible 
• Design matches the 

“domain” better 
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Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvements over 

the original algorithmic 
decomposition 
• Much more modular 

& extensible 
• Design matches the 

“domain” better 
• Less space  

overhead 
 

Tree 
Node 

1 

0|1|2 

Expression_Tree 

Component_Node 

Composite_Binary 
_Node 

Composite_Negate 
_Node 

Composite_ 
Add_Node 

Composite_ 
Multiply_Node 

Composite_ 
Divide_Node 

Composite_ 
Subtract_Node 

Leaf_Node Composite_ 
Unary_Node 

Koenig’s Ruminations on C++ book has another OO expression tree example 
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Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvement over 

the original algorithmic 
decomposition 

• Exhibits “high pattern 
density” 

Visitor 

Iterator 

Prototype 



GoF Patterns Expression Tree Case Study Douglas C. Schmidt 

27 

Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvement over 

the original algorithmic 
decomposition 

• Exhibits “high pattern 
density” 
• Nearly all classes & 

objects in design play  
a role in one or  
more patterns 
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Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvement over 

the original algorithmic 
decomposition 

• Exhibits “high pattern 
density” 
• Nearly all classes & 

objects in design play  
a role in one or  
more patterns 

• Patterns help clarify  
the relationships of 
myriad classes in the 
design 
 

Visitor 

Iterator 

Prototype 
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Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvement over 

the original algorithmic 
decomposition 

• Exhibits “high pattern 
density” 

• Same design can easily  
be realized in common OO 
programming languages 

 
 
 

Expression_Tree expr_tree = ...; 
Print_Visitor print_visitor; 
 
 
for (auto &iter : expr_tree) 
   iter.accept(print_visitor); 
 
 
ExpressionTree exprTree = ...; 
ETVisitor printVisitor =  
                 new PrintVisitor(); 
 
 
for (ComponentNode node : exprTree)  
    node.accept(printVisitor); 
 
 

Java for-each loop 

C++11 range-based for loop 
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Summary 
• Pattern-oriented expression 

tree processing app design 
has many benefits: 
• Major improvement over 

the original algorithmic 
decomposition 

• Exhibits “high pattern 
density” 

• Same design can easily  
be realized in common OO 
programming languages 
• C++ & Java solutions 

are nearly identical, 
modulo minor syntactical 
& semantic differences 

 
 
 

Expression_Tree expr_tree = ...; 
Print_Visitor print_visitor; 
 
 
for (auto &iter : expr_tree) 
   iter.accept(print_visitor); 
 
 
ExpressionTree exprTree = ...; 
ETVisitor printVisitor =  
                 new PrintVisitor(); 
 
 
for (ComponentNode node : exprTree)  
    node.accept(printVisitor); 
 
 

Java for-each loop 

C++11 range-based for loop 

See www.vincehuston.org/dp for many examples of patterns in C++ & Java 

http://www.vincehuston.org/dp
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