
A Case Study of “Gang of Four”
(GoF) Patterns : Part 9

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

2

• Describe the object-oriented
(OO) expression tree case study

• Evaluate the limitations with
algorithmic design techniques

• Present an OO design for the
expression tree processing app

• Summarize the patterns in
the expression tree design

• Explore patterns for
• Tree structure & access
• Tree creation
• Tree traversal
• Commands & factories
• Command ordering protocols

Topics Covered in this Part of the Module

format()

make_tree()

print()

eval() make_tree()

format()

quit()

*_Order_
Uninitialized

State

Uninitialized
State

*_Order_
Initialized

State

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

3

Overview of a Command Protocol Pattern

Purpose: Ensure user commands are performed in the correct order

State

ET_Context ET_State

Uninitialized
_State

Pre_Order_
Initialized_State

Post_Order_
Initialized_State

In_Order_
Initialized_State

Level_Order_
Initialized_State

ET_Interpreter
<< use >>

Pre_Order_
Uninitialized_State

Post_Order_
Uninitialized_State

In_Order_
Uninitialized_State

Level_Order_
Uninitialized_State

This pattern uses design of classes to explicitly order user commands correctly

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

4

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-
 order|level-order]
eval [post-order]
quit
> format in-order
> print in-order
Error: ET_State::print called in
invalid state

Problem: Ensuring Correct Command Protocol
Goals
• Ensure that users follow

the correct protocol when
entering commands

Protocol
violation

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

5

Problem: Ensuring Correct Command Protocol
Goals
• Ensure that users follow

the correct protocol when
entering commands

Constraints/forces
• Must consider context of

previous commands to
determine protocol
conformance, e.g.,
• format must be called

first
• expr must be called

before print or eval
• print & eval can be

called in any order

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-
 order|level-order]
eval [post-order]
quit
> format in-order
> print in-order
Error: ET_State::print called in
invalid state

Protocol
violation

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

6

Uninitialized
State

Solution: Encapsulate Command History as States
 • Handling user commands

depends on history of
prior commands

• This history can be
represented as a
state machine

format()

make_tree()

print()

eval() make_tree()

format()

quit()

*_Order_
Uninitialized

State

Uninitialized
State

*_Order_
Initialized

State

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

7

Uninitialized
State

Solution: Encapsulate Command History as States
 • Handling user commands

depends on history of
prior commands

• This history can be
represented as a
state machine

format()

print()

eval() make_tree()

format()

quit()

*_Order_
Uninitialized

State

Uninitialized
State

*_Order_
Initialized

State

make_tree()

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

8

Uninitialized
State

Solution: Encapsulate Command History as States
 • Handling user commands

depends on history of
prior commands

• This history can be
represented as a
state machine

format()

print()

eval() make_tree()

format()

quit()

*_Order_
Uninitialized

State

Uninitialized
State

*_Order_
Initialized

State

make_tree()

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

9

Uninitialized
State

Solution: Encapsulate Command History as States
 • Handling user commands

depends on history of
prior commands

• This history can be
represented as a
state machine

format()

print()

eval() make_tree()

format()

quit()

*_Order_
Uninitialized

State

Uninitialized
State

*_Order_
Initialized

State

make_tree()

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

10

Uninitialized
State

Solution: Encapsulate Command History as States
 • Handling user commands

depends on history of
prior commands

• This history can be
represented as a
state machine

format()

print()

eval() make_tree()

format()

quit()

*_Order_
Uninitialized

State

Uninitialized
State

*_Order_
Initialized

State

make_tree()

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

11

Uninitialized
State

Solution: Encapsulate Command History as States
 • Handling user commands

depends on history of
prior commands

• This history can be
represented as a
state machine

format()

print()

eval() make_tree()

format()

quit()

*_Order_
Uninitialized

State

Uninitialized
State

*_Order_
Initialized

State

make_tree()

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

12

Uninitialized
State

*_Order_
Uninitialized

State

format()

make_tree()

print() eval()

make_tree()

format()

quit()

*_Order_
Initialized

State

Solution: Encapsulate Command History as States

ET_Context also encapsulates variability & simplifies memory management

• Handling user commands
depends on history of
prior commands

• This history can be
represented as a
state machine

• The state machine can be
encoded using various
subclasses that enforce the
correct protocol for user
commands

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

13

ET_Context Class Interface
• Interface used to ensure commands are invoked according to correct protocol

Interface

• Commonality: Provides a common interface for ensuring that
expression tree commands are invoked according to the correct protocol

• Variability: The implementations—& correct functioning—of the
expression tree commands can vary depending on the requested
operations & the current state

void format(const std::string &new_format)
void make_tree(const std::string &expression)
void print(const std::string &format)
void evaluate(const std::string &format)

...
ET_State * state() const

void state(ET_State *new_state)
Expression_Tree & tree()

void tree(const Expression_Tree &new_tree)

These methods correspond to user commands

Setter/getter for
ET_State subclasses

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

14

ET_State Class Interface
• Implementation used to define the various states that affect how users

commands are processed

virtual void format(ET_Context &context,
 const std::string &new_format)

virtual void make_tree(ET_Context &context,
 const std::string &expression)

virtual void print(ET_Context &context,
 const std::string &format)

virtual void evaluate(ET_Context &context,
 const std::string &format)

Interface
These methods are delegated from ET_Context methods

• Commonality: Provides a common interface for ensuring that
expression tree commands are invoked according to the correct protocol

• Variability: The implementations—& correct functioning—of the
expression tree commands can vary depending on the requested
operations & the current state

http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

15

State GoF Object Behavioral
Intent
• Allow an object to alter its behavior when its internal state changes—the

object will appear to change its class
Applicability
• When an object must change its behavior at run-time depending on

which state it is in
• When several operations have the same large multipart conditional

structure that depends on the object's state

Structure

e.g., ET_Context

e.g., ET_State

e.g., Uninitialized_State,
Pre_Order_Uninitialized_State,
Pre_Order_Initialized_State, etc.

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

16

State GoF Object Behavioral
State example in C++

• Allows ET_Context object to alter its behavior when its state changes

void
ET_Context::make_tree(const std::string &expression) {
 state_->make_tree(*this, expression);
}

class Uninitialized_State : public State {
public:
 virtual void make_tree(ET_Context &tc,
 const std::string &expr)
 { throw Invalid_State("make_tree called in invalid state"); }
...
 It’s invalid to call make_tree()

in this state

This method delegates to the ET_State object

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

17

State GoF Object Behavioral
State example in C++

• Allows ET_Context object to alter its behavior when its state changes

void
ET_Context::make_tree(const std::string &expression) {
 state_->make_tree(*this, expression);
}

class In_Order_Uninitialized_State : public Uninitialized_State {
public:

 virtual void make_tree(ET_Context &et_context,
 const std::string &expr) {
 ET_Interpreter interp;
 ET_Interpreter_Context interp_context;

 et_context.tree(interp.interpret (interp_context, expr));
 et_context.state(new In_Order_Initialized_State);
 }
...

Calling make_tree() in this state initializes expression tree

Transition to the new state

This method delegates to the ET_State object

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

18

Consequences
+ It localizes state-specific behavior &

partitions behavior for different states
+ It makes state transitions explicit
+ State objects can be shared
– Can result in lots of subclasses that

are hard to understand

State GoF Object Behavioral

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

19

Consequences
+ It localizes state-specific behavior &

partitions behavior for different states
+ It makes state transitions explicit
+ State objects can be shared
– Can result in lots of subclasses that

are hard to understand

Implementation
• Who defines state transitions?
• Consider using table-based

alternatives
• Creating & destroying state objects

State GoF Object Behavioral

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

20

Consequences
+ It localizes state-specific behavior &

partitions behavior for different states
+ It makes state transitions explicit
+ State objects can be shared
– Can result in lots of subclasses that

are hard to understand

Implementation
• Who defines state transitions?
• Consider using table-based

alternatives
• Creating & destroying state objects

Known Uses
• The State pattern & its

application to TCP connection
protocols are characterized by
Ralph Johnson & Johnny Zweig in
their article “Delegation in C++,”
Journal of Object-Oriented
Programming, 4(11):22-35,
November 1991

• Unidraw & Hotdraw drawing tools

State GoF Object Behavioral

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

21

Summary of State Pattern

This pattern uses design of classes to explicitly order user commands correctly

State

ET_Context ET_State

Uninitialized
_State

Pre_Order_
Initialized_State

Post_Order_
Initialized_State

In_Order_
Initialized_State

Level_Order_
Initialized_State

ET_Interpreter
<< use >>

State ensures user commands are performed in the correct order

Pre_Order_
Uninitialized_State

Post_Order_
Uninitialized_State

In_Order_
Uninitialized_State

Level_Order_
Uninitialized_State

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

22

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvements over

the original algorithmic
decomposition

Tree
Node

1

0|1|2

Expression_Tree

Component_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node Composite_
Unary_Node

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

23

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvements over

the original algorithmic
decomposition
• Much more modular

& extensible

Tree
Node

1

0|1|2

Expression_Tree

Component_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node Composite_
Unary_Node

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

24

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvements over

the original algorithmic
decomposition
• Much more modular

& extensible
• Design matches the

“domain” better

Tree
Node

1

0|1|2

Expression_Tree

Component_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node Composite_
Unary_Node

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

25

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvements over

the original algorithmic
decomposition
• Much more modular

& extensible
• Design matches the

“domain” better
• Less space

overhead

Tree
Node

1

0|1|2

Expression_Tree

Component_Node

Composite_Binary
_Node

Composite_Negate
_Node

Composite_
Add_Node

Composite_
Multiply_Node

Composite_
Divide_Node

Composite_
Subtract_Node

Leaf_Node Composite_
Unary_Node

Koenig’s Ruminations on C++ book has another OO expression tree example

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

26

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvement over

the original algorithmic
decomposition

• Exhibits “high pattern
density”

Visitor

Iterator

Prototype

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

27

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvement over

the original algorithmic
decomposition

• Exhibits “high pattern
density”
• Nearly all classes &

objects in design play
a role in one or
more patterns

Visitor

Iterator

Prototype

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

28

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvement over

the original algorithmic
decomposition

• Exhibits “high pattern
density”
• Nearly all classes &

objects in design play
a role in one or
more patterns

• Patterns help clarify
the relationships of
myriad classes in the
design

Visitor

Iterator

Prototype

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

29

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvement over

the original algorithmic
decomposition

• Exhibits “high pattern
density”

• Same design can easily
be realized in common OO
programming languages

Expression_Tree expr_tree = ...;
Print_Visitor print_visitor;

for (auto &iter : expr_tree)
 iter.accept(print_visitor);

ExpressionTree exprTree = ...;
ETVisitor printVisitor =
 new PrintVisitor();

for (ComponentNode node : exprTree)
 node.accept(printVisitor);

Java for-each loop

C++11 range-based for loop

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

30

Summary
• Pattern-oriented expression

tree processing app design
has many benefits:
• Major improvement over

the original algorithmic
decomposition

• Exhibits “high pattern
density”

• Same design can easily
be realized in common OO
programming languages
• C++ & Java solutions

are nearly identical,
modulo minor syntactical
& semantic differences

Expression_Tree expr_tree = ...;
Print_Visitor print_visitor;

for (auto &iter : expr_tree)
 iter.accept(print_visitor);

ExpressionTree exprTree = ...;
ETVisitor printVisitor =
 new PrintVisitor();

for (ComponentNode node : exprTree)
 node.accept(printVisitor);

Java for-each loop

C++11 range-based for loop

See www.vincehuston.org/dp for many examples of patterns in C++ & Java

http://www.vincehuston.org/dp

	Slide Number 1
	Topics Covered in this Part of the Module
	Overview of a Command Protocol Pattern
	Problem: Ensuring Correct Command Protocol
	Problem: Ensuring Correct Command Protocol
	Solution: Encapsulate Command History as States	
	Solution: Encapsulate Command History as States	
	Solution: Encapsulate Command History as States	
	Solution: Encapsulate Command History as States	
	Solution: Encapsulate Command History as States	
	Solution: Encapsulate Command History as States	
	Solution: Encapsulate Command History as States	
	ET_Context Class Interface
	ET_State Class Interface
	State GoF Object Behavioral
	State GoF Object Behavioral
	State GoF Object Behavioral
	State GoF Object Behavioral
	State GoF Object Behavioral
	State GoF Object Behavioral
	Summary of State Pattern
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary

