
GoF Patterns Expression Tree Case Study Douglas C. Schmidt

1

Implementing STL Iterator Semantics
Goals
• Ensure the proper semantics of post-increment operations for STL-based
ET_Iterator objects, i.e.:
• Expression_Tree value = iter++ vs.
Expression_Tree value = ++iter

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

2

Implementing STL Iterator Semantics
Goals
• Ensure the proper semantics of post-increment operations for STL-based
ET_Iterator objects
• Expression_Tree value = iter++ vs.
Expression_Tree value = ++iter

Constraints/forces
• STL pre-increment operations are easy to implement since they simply

increment the value & return *this, e.g.,
 iterator &operator++() { ++...; return *this; }

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

3

Implementing STL Iterator Semantics
Goals
• Ensure the proper semantics of post-increment operations for STL-based
ET_Iterator objects
• Expression_Tree value = iter++ vs.
Expression_Tree value = ++iter

Constraints/forces
• STL pre-increment operations are easy to implement since they simply

increment the value & return *this, e.g.,
 iterator &operator++() { ++...; return *this; }

• STL post-increment operations are more complicated since they return a
copy of the existing iterator before incrementing its value, e.g.,

 iterator operator++(int)
 { iterator temp = copy_*this; ++...; return temp; }

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

4

Implementing STL Iterator Semantics
Goals
• Ensure the proper semantics of post-increment operations for STL-based
ET_Iterator objects
• Expression_Tree value = iter++ vs.
Expression_Tree value = ++iter

Constraints/forces
• STL pre-increment operations are easy to implement since they simply

increment the value & return *this, e.g.,
 iterator &operator++() { ++...; return *this; }

• STL post-increment operations are more complicated since they return a
copy of the existing iterator before incrementing its value, e.g.,

 iterator operator++(int)

 { iterator temp = copy_*this; ++...; return temp; }
• Since our ET_Iterator objects use the Bridge pattern it is tricky to

implement the “copy_*this” step above in a generic way

As a general rule, in STL it’s better to say ++iter than iter++

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

5

Solution: Clone a New Instance Via a Prototype

ET_Iterator

 operator++(int)

ET_Iterator_Impl

clone()

Level_Order_ET_Iterator_Impl

clone()

Pre_Order_ET_Iterator_Impl

clone()

In_Order_ET_Iterator_Impl

clone()

Post_Order_ET_Iterator_Impl

clone()

iterator
ET_Iterator::operator++(int)
{
 iterator temp(impl_->clone());
 ++(*impl_);
 return temp;
}

impl_

Bridge pattern encapsulates variability & simplifies memory management

The Bridge pattern abstraction class
needn’t have direct knowledge of

implementor subclass details

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

6

ET_Iterator_Impl Class Interface
• Subclasses of this base class define various iterations algorithms that can

traverse an expression tree

 ET_Iterator_Impl
 (const Expression_Tree &tree)

virtual
Component_Node * operator *()=0

virtual void operator++()=0
virtual bool operator==(const ET_Iterator_Impl &)=0
virtual bool operator!= (const ET_Iterator_Impl &)=0

virtual
ET_Iterator_Impl * clone()=0

Interface

• Commonality: Provides a common interface for expression tree iterator
implementations

• Variability: Each subclass implements the clone() method to return a
deep copy of itself for use by ET_Iterator::operator++(int)

Subclass performs a deep copy

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

7

Intent
• Specify the kinds of objects to create using a prototypical instance & create

new objects by copying this prototype
Applicability
• When the classes to instantiate are specified at run-time
• There’s a need to avoid the creation of a factory hierarchy
• It is more convenient to copy an existing instance than to create a new one

 Structure

Prototype GoF Object Creational

e.g., ET_Iterator

e.g., ET_Iterator_Impl

e.g., Pre_Order_ET_Iterator_Impl,
In_Order_ET_Iterator_Impl, etc.

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

8

Prototype GoF Object Creational
Prototype example in C++

• Relationship between iterator interface (Bridge) & implementor hierarchy
(Prototype)

iterator
ET_Iterator::operator++(int)
{
 iterator temp(impl_->clone());
 ++(*impl_);
 return temp;
}

The Bridge pattern abstraction class
calls clone() on the implementor
subclass to get a deep copy without
breaking encapsulation

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

9

Prototype GoF Object Creational
Prototype example in C++

• Relationship between iterator interface (Bridge) & implementation
(Prototype)

iterator
ET_Iterator::operator++(int)
{
 iterator temp(impl_->clone());
 ++(*impl_);
 return temp;
}

ET_Iterator_Impl *Pre_Order_ET_Iterator_Impl::clone()
{
 return new Pre_Order_ET_Iterator_Impl(*this);
}

This method encapsulates the details
of making a deep copy of itself

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

10

Prototype GoF Object Creational
Consequences
+ Can add & remove classes at runtime by

cloning them as needed
+ Reduced subclassing minimizes need for

lexical dependencies at run-time
– Every class that used as a prototype must

itself be instantiated
– Classes that have circular references to

other classes cannot really be cloned

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

11

Prototype GoF Object Creational
Consequences
+ Can add & remove classes at runtime by

cloning them as needed
+ Reduced subclassing minimizes need for

lexical dependencies at run-time
– Every class that used as a prototype must

itself be instantiated
– Classes that have circular references to

other classes cannot really be cloned

Implementation
• Use prototype manager
• Shallow vs. deep copies
• Initializing clone internal state within a

uniform interface

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

12

Prototype GoF Object Creational
Consequences
+ Can add & remove classes at runtime by

cloning them as needed
+ Reduced subclassing minimizes need for

lexical dependencies at run-time
– Every class that used as a prototype must

itself be instantiated
– Classes that have circular references to

other classes cannot really be cloned

Implementation
• Use prototype manager
• Shallow vs. deep copies
• Initializing clone internal state within a

uniform interface

Known Uses
• The first widely known

application of the Prototype
pattern in an object-oriented
language was in ThingLab

• Jim Coplien describes idioms
related to the Prototype
pattern for C++ & gives
many examples & variations

• Etgdb debugger for ET++
• The music editor example is

based on the Unidraw
drawing framework

GoF Patterns Expression Tree Case Study Douglas C. Schmidt

13

Summary of Tree Traversal Patterns

These patterns allow adding new operations without affecting tree structure

The Iterator, Prototype, & Visitor patterns traverse the
expression tree & perform designated operations

Visitor

Ite
ra

to
r

Prototype

Expression_Tree Component_Node
ET_Visitor

Evaluation_Visitor

std::stack

Print_Visitor
ET_Iterator ET_Iterator_Impl

Pre_Order_Expression
_Tree_Iterator_Impl

In_Order_Expression
_Tree_Iterator_Impl

Post_Order_Expression
_Tree_Iterator_Impl

Level_Order_Expression
_Tree_Iterator_Impl std::queue

<< create >>

<< accept >>

	Implementing STL Iterator Semantics
	Implementing STL Iterator Semantics
	Implementing STL Iterator Semantics
	Implementing STL Iterator Semantics
	Solution: Clone a New Instance Via a Prototype
	ET_Iterator_Impl Class Interface
	Prototype GoF Object Creational
	Prototype GoF Object Creational
	Prototype GoF Object Creational
	Prototype GoF Object Creational
	Prototype GoF Object Creational
	Prototype GoF Object Creational
	Summary of Tree Traversal Patterns

