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Implementing STL Iterator Semantics 
Goals 
• Ensure the proper semantics of post-increment operations for STL-based 
ET_Iterator  objects, i.e.: 
• Expression_Tree value = iter++ vs.  
Expression_Tree value = ++iter 
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Implementing STL Iterator Semantics 
Goals 
• Ensure the proper semantics of post-increment operations for STL-based 
ET_Iterator  objects 
• Expression_Tree value = iter++ vs.  
Expression_Tree value = ++iter 

Constraints/forces 
• STL pre-increment operations are easy to implement since they simply 

increment the value & return *this, e.g., 
 iterator &operator++() { ++...; return *this; } 
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Constraints/forces 
• STL pre-increment operations are easy to implement since they simply 

increment the value & return *this, e.g., 
 iterator &operator++() { ++...; return *this; } 

• STL post-increment operations are more complicated since they return a 
copy of the existing iterator before incrementing its value, e.g., 

 iterator operator++(int)  
 { iterator temp = copy_*this; ++...; return temp; } 
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Implementing STL Iterator Semantics 
Goals 
• Ensure the proper semantics of post-increment operations for STL-based 
ET_Iterator  objects 
• Expression_Tree value = iter++ vs.  
Expression_Tree value = ++iter 

Constraints/forces 
• STL pre-increment operations are easy to implement since they simply 

increment the value & return *this, e.g., 
 iterator &operator++() { ++...; return *this; } 

• STL post-increment operations are more complicated since they return a 
copy of the existing iterator before incrementing its value, e.g., 

 iterator operator++(int) 

 { iterator temp = copy_*this; ++...; return temp; } 
• Since our ET_Iterator objects use the Bridge pattern it is tricky to 

implement the “copy_*this” step above in a generic way 

As a general rule, in STL it’s better to say ++iter than iter++ 
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Solution: Clone a New Instance Via a Prototype 

ET_Iterator 

    operator++(int) 

ET_Iterator_Impl 

clone() 

Level_Order_ET_Iterator_Impl 

clone() 

Pre_Order_ET_Iterator_Impl 

clone() 

In_Order_ET_Iterator_Impl 

clone() 

Post_Order_ET_Iterator_Impl 

clone() 

iterator 
ET_Iterator::operator++(int) 
{ 
  iterator temp(impl_->clone()); 
  ++(*impl_); 
  return temp; 
} 

impl_ 

Bridge pattern encapsulates variability & simplifies memory management 

The Bridge pattern abstraction class 
needn’t have direct knowledge of  

implementor subclass details 
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ET_Iterator_Impl Class Interface 
• Subclasses of this base class define various iterations algorithms that can 

traverse an expression tree 

  ET_Iterator_Impl  
          (const Expression_Tree &tree) 

virtual 
Component_Node * operator *()=0 

virtual void  operator++()=0 
virtual bool  operator==(const ET_Iterator_Impl &)=0 
virtual bool  operator!= (const ET_Iterator_Impl &)=0 

virtual 
ET_Iterator_Impl * clone()=0 

Interface 

• Commonality: Provides a common interface for expression tree iterator 
implementations 

• Variability: Each subclass implements the clone() method to return a 
deep copy of itself for use by ET_Iterator::operator++(int) 

Subclass performs a deep copy 

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
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Intent 
• Specify the kinds of objects to create using a prototypical instance & create 

new objects by copying this prototype  
Applicability 
• When the classes to instantiate are specified at run-time 
• There’s a need to avoid the creation of a factory hierarchy 
• It is more convenient to copy an existing instance than to create a new one   

 Structure 

Prototype                      GoF Object Creational 

e.g., ET_Iterator 

e.g., ET_Iterator_Impl 

e.g., Pre_Order_ET_Iterator_Impl, 
In_Order_ET_Iterator_Impl, etc. 
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Prototype                      GoF Object Creational 
Prototype example in C++ 

• Relationship between iterator interface (Bridge) & implementor hierarchy 
(Prototype) 

 
iterator  
ET_Iterator::operator++(int) 
{ 
  iterator temp(impl_->clone()); 
  ++(*impl_); 
  return temp; 
} 
 
 
 
 

 

The Bridge pattern abstraction class 
calls clone() on the implementor 
subclass to get a deep copy without 
breaking encapsulation 
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Prototype                      GoF Object Creational 
Prototype example in C++ 

• Relationship between iterator interface (Bridge) & implementation 
(Prototype) 

 
iterator 
ET_Iterator::operator++(int) 
{ 
  iterator temp(impl_->clone()); 
  ++(*impl_); 
  return temp; 
} 
 
ET_Iterator_Impl *Pre_Order_ET_Iterator_Impl::clone()  
{ 
  return new Pre_Order_ET_Iterator_Impl(*this); 
}   
 
 

 

This method encapsulates the details 
of making a deep copy of itself 
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Prototype                      GoF Object Creational 
Consequences 
+ Can add & remove classes at runtime by 

cloning them as needed 
+ Reduced subclassing minimizes need for 

lexical dependencies at run-time 
– Every class that used as a prototype must 

itself be instantiated  
– Classes that have circular references to 

other classes cannot really be cloned 
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cloning them as needed 
+ Reduced subclassing minimizes need for 

lexical dependencies at run-time 
– Every class that used as a prototype must 

itself be instantiated  
– Classes that have circular references to 

other classes cannot really be cloned 

Implementation 
• Use prototype manager 
• Shallow vs. deep copies 
• Initializing clone internal state within a 

uniform interface 
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Prototype                      GoF Object Creational 
Consequences 
+ Can add & remove classes at runtime by 

cloning them as needed 
+ Reduced subclassing minimizes need for 

lexical dependencies at run-time 
– Every class that used as a prototype must 

itself be instantiated  
– Classes that have circular references to 

other classes cannot really be cloned 

Implementation 
• Use prototype manager 
• Shallow vs. deep copies 
• Initializing clone internal state within a 

uniform interface 

Known Uses 
• The first widely known 

application of the Prototype 
pattern in an object-oriented 
language was in ThingLab  

• Jim Coplien describes idioms 
related to the Prototype 
pattern for C++ & gives 
many examples & variations 

• Etgdb debugger for ET++  
• The music editor example is 

based on the Unidraw 
drawing framework 
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Summary of Tree Traversal Patterns 

These patterns allow adding new operations without affecting tree structure 

The Iterator, Prototype, & Visitor patterns traverse the 
expression tree & perform designated operations 

Visitor 

Ite
ra

to
r 

Prototype 

Expression_Tree Component_Node 
ET_Visitor 

Evaluation_Visitor 

std::stack 

Print_Visitor 
ET_Iterator ET_Iterator_Impl 

Pre_Order_Expression 
_Tree_Iterator_Impl 

In_Order_Expression 
_Tree_Iterator_Impl 

Post_Order_Expression 
_Tree_Iterator_Impl 

Level_Order_Expression 
_Tree_Iterator_Impl std::queue 

<< create >> 

<< accept >> 
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