Overview of Patterns: Part 1

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

V

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Part of the Module

» Motivate the importance of design |
experience & leveraging recurring
design structure in becoming a
master software developer

Overview of Patterns Douglas C. Schmidt

Becoming a Master

Experts perform differently than
beginners

* Unlike novices, professional
athletes, musicians & dancers
move fluidly & effortlessly,
without focusing on each
individual movement

AL Tean,

Overview of Patterns Douglas C. Schmidt

Becoming a Master

 When watching experts perform
it's easy to forget how much effort
they’ve put into reaching high
levels of achievement

Overview of Patterns

Douglas C. Schmidt

Becoming a Master

« Continuous repetition &
practice are crucial to success

Overview of Patterns Douglas C. Schmidt

Becoming a Master

» Mentoring from other experts is also
essential to becoming a
master

Overview of Patterns

Douglas C. Schmidt

Becoming a Master Software

« Knowledge of programming languages
IS necessary, but not sufficient

« Can fall prey to “featuritis” or worse

* e.g., GPERF perfect hash function
generator, circa 1990

SECOND EDITION

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

GPERF

A Perfect Hash Function Generator

Douglas C. Schmidt e~ ——_ ~
schmidt@cs.wustl.edu /\ N \ \\
http:/f'www.cs.wustl.edu/~schmidt/ / OPTIONS (, /; GEN |
. N
Department of Computer Science __ _GLOBAL B [PERF \
Washington University, St. Louis 63130 S— \\ \
‘/ Ne—— N RN - -
. |
1 Introduction a sample input keyfile " KEY
and implementation sti]
Perfect hash functions are a time and space efficient imple- tjon 5 shows the result N — \ LIST / PR N
mentation of stafic search sefs. A static search set is an ab- gperf-generated reco \ \J - \ \J'
stract data type (ADT) with operations initialize. msert. and for reserved word lod // READ / > 7 BOOL
refrieve. Static search sets are common in system software tions with gperfandy) " T~ /
applications. Typical static search sets include compiler and presents concluding rex \\B UFFER/ //‘ HASH | \\ ARRAY)!
interpreter reserved words, assembler instruction mnemonics. S~ 7 o \ /'I ~—_ 7
shell interpreter built-in commands, and CORBA IDL compil- \ TABLE /
ers. Search set elements are called keywords. Keywords are 2 Static Seard| N - - 4

inserted into the set once, usually off-line at compile-time.
gperf is a freely available perfect hash function generator
written in C++ that automatically constructs perfect hash func-
tions from a user-supplied list of keywords. It was designed in
the spirit of utilities like 1ex [1] and yacc [2] to remove the
drudgery associated with constructing time and space efficient

“HTARNE STRC

Developer

Programming in

Objective-C

Fourth Edition

Developer’s Library

Special Annotated Edition for C#3.0 '~

The C#
Programming
Language

e~

Anders Hejlsberg
Mads Torgersen
Scott Wiltamuth

Peter Golde

There are numerous implementations of static search sets.
Common examples include sorted and unsorted arrays and
linked lists, AVL trees, optimal binary search trees, digital
search fries. deterministic finite-state automata. and various
hash table schemes. such as open addressing and bucket chain-

Ken Arnold « James Gosling + David Holmes
The Java Programming
Language,
Fourth Edition

D Sun

Overview of Patterns

Douglas C. Schmidt

Becoming a Master Software Developer

Knowledge of programming languages
IS necessary, but not sufficient

o Can fall prey to “featuritis” or worse 'C)

* e.g., GPERF perfect hash function
generator, circa 1990

SECOND EDITION

THE

nst

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

GPERF

A Perfect Hash Function Generator

Douglas C. Schmidt
schmidt@cs.wustl.edu
http:/fwww.cs. wustl.edu/~schmidt/
Department of Computer Science
Washington University, St. Louis 63130

1 Introduction

Perfect hash functions are a time and space efficient imple-
mentation of static search sefs. A static search set is an ab-
stract data type (ADT) with operations initialize, insert. and
refrieve. Static search sets are common in system software
applications. Typical static search sets include compiler and
interpreter reserved words, assembler instruction mnemonics.
shell interpreter built-in commands, and CORBA IDL compil-
ers. Search set elements are called keywords. Keywords are
inserted into the set once, usually off-line at compile-time.
gperf is a freely available perfect hash function generator
written in C++ that automatically constructs perfect hash func-
tions from a user-supplied list of keywords. It was designed in
the spirit of utilities like 1ex [1] and yacc [2] to remove the

drudgery associated with constructing time and space efficient pach table schemes. such as open addressing and bucket chain-

a sample input keyfile}
and implementation st

for reserved word lo,
tions with gperfand |
presents concluding re: 3

2 Static Sear¢

There are numerous implementations of static search sets.
Common examples include sorted and unsorted arrays and
linked lists, AVL trees, optimal binary search trees, digital
search fries. deterministic finite-state automata. and various

Problems

e Hard-coded
algorithms

e Hard-coded
data
structures

* Hard-coded
generators

* etc.

’ ‘:ma.m EnFioN

BIARNE

THEL

Updated
for 0S5
and ARC.

Programming in

Objective-C

Fourth Edition

Developer's Library

The C#
Programming
Language

Third Edition
B
sl
s

Anders Hejlsberg
Mads Torgersen

Scott Wiltamuth
Peter Golde

Ken Armold = James Gosling * David Holmes

The Java Programming
Language,
Fourth Edition

... from the Source™

D Sun

e
<

See www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf for a paper on GPERF

http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf

Overview of Patterns

Douglas C. Schmidt

Becoming a Master Software

« Knowledge of programming languages

SECOND EDITION -

IS necessary, but not sufficient
« Can fall prey to “featuritis” or worse

C++

PROGRAMMING LANGUAGE

* e.g., GPERF perfect hash function

PROGRAMMING
LANGUAGE.

BRIAN W KERNIGHAN
DENNIS M. RITCHIE

generator, circa 1990

GPERF

A Perfect Hash Function Generator

Douglas C. Schmidt
schmidt@cs.wustl.edu
http:/fwww.cs. wustl.edu/~schmidt/
Department of Computer Science
Washington University, St. Louis 63130

1 Introduction

Perfect hash functions are a time and space efficient imple-
mentation of static search sefs. A static search set is an ab-
stract data type (ADT) with operations initialize, insert. and
refrieve. Static search sets are common in system software
applications. Typical static search sets include compiler and
interpreter reserved words, assembler instruction mnemonics.
shell interpreter built-in commands, and CORBA IDL compil-
ers. Search set elements are called keywords. Keywords are
inserted into the set once, usually off-line at compile-time.
gperf is a freely available perfect hash function generator
written in C++ that automatically constructs perfect hash func-
tions from a user-supplied list of keywords. It was designed in
the spirit of utilities like 1ex [1] and yacc [2] to remove the
drudgery associated with constructing time and space efficient

“BIARNE

THECREATC

a sample input keyfile: Section 4 highlights design patterns
and implementation strategies used to develop gperf: Sec-
tion 5 shows the results from empirical benchmarks between
gperf-generated recognizers and other popular techniques
for reserved word lookup: Section 6 outlines the limita-
tions with gperfand potential enhancements: and Section 7
presents concluding remarks.

2 Static Search Set Implementations

GNU Tools
Micellany

-~ ""GNU Utilities

A Compendium of

ichard M. Staliman, et al.

There are numerous implementations of static search sets.
Common examples include sorted and unsorted arrays and
linked lists, AVL trees, optimal binary search trees, digital
search tries. deterministic finite-state automata, and various
hash table schemes. such as open addressing and bucket chain-

Developer

Stephen G. Kochan
Updated
for 0S5
and ARC

Programming in

Objective-C

Fourth Edition

Developer's Library

Special Annotated Edition for C#3.0 7'v

The C#
Programming
Language

Third Edition

om,s
o

Anders Hejlsberg
Mads Torgersen
Scott Wiltamuth

Peter Golde

The Java Programming
Language,

Fourth Edition

GPERF is part of the GNU software release at www.gnu.org/software/gperf

http://www.gnu.org/software/gperf

Overview of Patterns Douglas C. Schmidt

Becoming a Master Software Developer

« Knowledge of programming languages —
Is necessary, but not sufficient THE C+ e
e Can fall prey to “featuritis” or worse! cf) e Objective.C
* e.g., “Best one-liner” from PRORREOREE | —
2006 “Obfuscated C Code” ol
contest —
main(){ ~4488&main(-~_);putchar(-- _%64?32|-~7[L A
__TIME___ - /8%8]['">"txiZN(~z?""-48]>>"";; ;====~$::199" Tl;f!:gf’agi
[*2&8] /64]1/(&2?1:8)%8&1:10):} ant
« This program prints out the time when it was compiled! o

Prrrrr rrrnny]] Yoo Gosing D Holnes
1 1 1t 1t 1t 1t 1t Iht-.__l:' r_mnu:;_
]]]] e] —_———
P P]]]] rrreny]
N N N N N N
N N N N N N
P P]]]]
See www.ioccc.org for many examples of obfuscated C

http://www.ioccc.org/

Overview of Patterns Douglas C. Schmidt

Becoming a Master Software Developer

Register_Sample
User-App PublisherIrnpl wocxDataWriterImpl | | WriteDataContainer DatalinkSet Datalink

1 _cww_fiegister()

L :get_or_create_harﬁdle()

 Software methods emphasize design [F
notations, such as UML i i

« Fine for specification & documentation ot v o

e e.g., omits mundane implementationé | s e
details & focuses on relationships] [
between key design entities ’

41 new PublicationIn';tanceSampIe()

~9: for all Datal:1nks(p

-1
-~
T SEN

L 8 : send_contral(y o
.
«local» : 11 : send
Enterprise Componen end()
12 1 send_stop
<localn : : 13 : store instance datal) L
EntityComponent !
Lsel_en context{in ctx | EntityContext) ; void :
wlocal» _entty_ { o ity] ' 14 ; store handle()
+unset_entity_context() : void

SessionComponent
+set_session_context(in cts - SessionContext) | void
+com_activate() | waid
+com_passivate() @ vold
+com_remaove() - void

+cem_activate() © woid
Hcom_loadi) | vioid
+Cem_store() © void
+com_passivate() : void
+com_remove() | void

11

Overview of Patterns Douglas C. Schmidt

Becoming a Master Software Developer

« But good software design is more
than drawing diagrams

* Good draftsmen/artists are not
necessarily good architects!

12

Overview of Patterns Douglas C. Schmidt

Becoming a Master Software Developer
g = UNIX
pam .

. *:E_'\-_‘_“'* B A
S‘ CCM (k Session Router e =
(Stream m Module

S5 | Event Filter

Module

Event Analyzer
Module

—, | Switch Adapter
Module

_—-" Reactor A J Event_Handlcr;:
_ \ register handler(h) \} \ handle_event() {
o BOttOm—hneZ Master SOftware) remove_handler(h) | | handle_close() \
. . [dispatch() ___e—] get_handle())
developers rely on design experience e
» At least as important as T . /
knowledge of programming O (hevhandle event () - FAIL) T
. h-=handle close (h): "\ Concrete \
languages & environments end loop / Event_Handler /

—_—— -

See www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf for more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf

Overview of Patterns Douglas C. Schmidt

Where Should Design Experience Reside?

Well-designed software exhibits recurring structures & behaviors that promote

* Abstraction Client-side Broker Server-side Broker o
Client | [| Application
o FIeX|b|I|ty . Proxy request i invoke Component
Client | #% N \% \ | \ |
° method_1 - send 1- receive method_1
Reuse 71 S g |
; method_2 receive == send |[=<— method_2
e Quality = !/ —
i | discover / register |[=—— |
 Modu |ar|ty discover client proxy i % | register component
Network

14

Overview of Patterns Douglas C. Schmidt

Where Should Design Experience Reside?

Client-side Broker Server-side Broker

Client | [| Application
- Proxy > request | invoke Component
ien | \ |
method_1 ﬂ f \ \%’ send -‘? receive J method 1
“=7' | | |
method_2 receive |<< gt send ——— method_2
E— |
~| discover ’ register |[<=—— |
discover client proxy I i | register component

Therein lies valuable
design knowledge

Overview of Patterns Douglas C. Schmidt

Where Should Design Experience Reside?

Client-side Broker Server-side Broker o
Client | [| Application
- Proxy > request | invoke Component
ien | \ |
method_1 ﬁ /\ \% send ‘? receive J method_1
Ve | | |
method_2 receive |<< gt send ——— method_2
 E— |
~.| discover ’ register |<=—— |
discover client proxy I i | register component
Network

Unfortunately, this design knowledge is
typically located in:

1. the heads of the experts

Overview of Patterns Douglas C. Schmidt

Where Should Design Experience Reside?

Client-side Broker Server-side Broker o
Client | [| Application
Proxy request \ invoke Component
Client | 7! [\ |
method_1 ﬂ / \ \% send \? receive method_1
Ve | | |
method 2 receive == J1 send - method_2
| E— |
= discover / register |<=—— |
discover client proxy | i | register component
Network

public class KeyGeneratorImpl extends Service {
private Set<UUID> keys = new HashSet<UUID>();
private final KeyGenerator.Stub binder = new KeyGenerator.Stub() {
public void setCallback (final KeyGeneratorCallback callback) {
UUID id;

Unfortunately, this design knowledge is synchronized (keys) { _ o
typlcally Iocated in: igyi-;gdzig;J:D-randomUUID(), } while (keys.contains(id));
b
final String key = id.toString();
try {
2. the bowels of the source code Log.d(getClass(y.gethame(), “sending key™ + key);

cal lback.sendKey(key) ;
} catch (RemoteException e) { e.printStackTrace(); }
}
}:
public IBinder onBind(Intent intent) { return this.binder; }

17

Overview of Patterns

Douglas C. Schmidt

Where Should Design Experience Reside?

Client

Client
Proxy

Client-side Broker

method 1

method 2

=

g%

——— |

—

Server-side Broker

discover client proxy

| ¥ |
request | invoke
/\ \% send ‘? receive J
[[
receive << gyt send ———
discover ' register
I i [
Network

Both locations are fraught with danger!

Application
Component

AN

method_1

method 2

e
-

register component

18

Overview of Patterns Douglas C. Schmidt

sSummary

» Achieving mastery of software
development requires
continuous repetition,
practice, & mentoring
from experts

F

Overview of Patterns

Douglas C. Schmidt

sSummary

» Achieving mastery of software
development requires
continuous repetition,
practice, & mentoring
from experts

e Open-source & open

courses are vital
resources

U 0 0
PROCESS/ .
THREAD LOG SHARED | /|
ANAGERS | /=== == Mmsc : 0 MALLOC | 47
EHE AR T O SR S ATOF ST (LT
SYNCH [i| sPIPE [“sock_saPf: FIFO S MEM
WRAPPERS [sAP [/ TLI sAP [/ sAP MAP
OS ADAPTATION LAYER
PROCESSES]| STREAM | socKETs{ NAMED || SELECT/ |{ DYNAMIC || MEMORY |f sysTem |
THREADS [{ PIPES TLI PIPES |7 10 COMP || LINKING || MAPPING {1 V IPC |,
PRO AD 0 ATIO OR

General POSIX, Windows, & Real-time Operating System Services

Voice Dial

Activity Manager

Package Manager

Surface Manager

OpenGL[ES

SGL

Display Driver

USE Driver

APPLICATIONS

APPLICATION FRAMEWORK

LIBRARIES

LINUX KERNEL

Calculator

Notification
Manager

ANDROID HUNTIME

Binder (IPC) Driver

Mnm_g;-me nt

Overview of Patterns Douglas C. Schmidt

sSummary

» Achieving mastery of software

development requires e
continuous repetition,
practice, & mentoring ,

Pattern-Oriented Software
from experts Architectures for Concurrent and

Networked Software
Douglas C. Schmidt

In this course we will learn how to apply patterns, pattern

e Open-source & open
courses are vital e ey et
resources

Next Session: 58 159 a4

Feb 4th 2013 (6 weeks long) wTweet B +1 Kk

Workload: 4-6 hours/week

About the Course

The advent of multi-core and distributed-core processors, coupled with ubiguitous wireless and wired connectivity, is driving
the need for software engineers and programmers who understand how to develop concurrent and networked software. Despite
many improvements in processors and networks, however, developing concurrent and networked software remains hard

and developing high quality reusable concurrent and networked software is even harder. The principles, methods, and skills
required to develop such software are best learned by understanding pattern, partern languages, and frameworks.

A pattern is general reusable solution to a commonly occurring problem within a given context in software design. When related
patterns are woven together they form a pattern language that provides a process for the orderly resolution of software
development problems. Frameworks can be viewed as concrete realizations of pattern languages that facilitate direct reuse of

design and code.

This course describes how to apply patterns, pattern languages, and frameworks to alleviate the complexity of developing
concurrent and networked software via the use of object-oriented design techniques and programming language features,
distribution middleware, and advanced operating system mechanisms. Case studies from the domains of mobile apps, web

Serven and avicnice svsteme will]]= iiﬁ to chow cace n::JHPr‘n_nrh:nrﬂi oftware :rrhwtirmr.: Hﬁlmﬂ and nrocramming

Information & registration available at www.coursera.org/course/posa @

http://www.coursera.org/course/posa

Overview of Patterns Douglas C. Schmidt

sSummary

— —_——

/ _-_‘-___/—“\ e ~N == —~
/,// Reactor A // Event Handler)
[\ /
\ register_handler(h) | \ handle _event() {
) remove handler(h) /J) handle_close() \
i dispatch() /_,/.—El get _handle())
N e 1 n | .

;«-;ﬂ/ - \\ P W//

-~ —_ ~ 7
=

select (handlers);

i GOOd SOftware deVEIOpers r9|y foreach h in handlers loop

. if (h->handle event (h) == FAIL) - ~
on experlence gleanEd from h->handle close (h); (\ Concrete \\
successful designs end loop / Event_Handler_;

Client-side Broker Server-side Broker o
Client |] | Application
Clont Proxy > request \ invoke Component
len | \ |
ﬂ method_1 ﬂ / \ \% send "? receive J method_1
| I [|
method_2 receive |= J1 send - method_2
| E—— |
= discover 4 register |<==—— |
discover client proxy I i | register component
Network

22

Overview of Patterns Douglas C. Schmidt

sSummary

 What we need is a means of
extracting, documenting,
conveying, applying, &
preserving this design
knowledge without undue
time, effort, & risk!

Overview of Patterns: Part 2

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

V

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Part of the Module

Mapping
Design
Problems to
Proven
Solutions

 Introduce patterns as a |
means of improving software _
guality & developer D atiarn
productivity by... Concepts

Enabling
Systematic
Reuse

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Part of the Module

Mapping
Design
Problems to
,_ Proven
A Solutions

 Introduce patterns as a
means of improving software
guality & developer £ pararn
productivity by... Concepts

Enabling
Systematic
Reuse

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Part of the Module

Mapping
Design
Problems to
,_ Proven
A Solutions

 Introduce patterns as a
means of improving software
guality & developer £ pararn
productivity by... Concepts

Enabling
Systematic
Reuse

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Part of the Module

Mapping
Design
Problems to
,_ Proven
A Solutions

 Introduce patterns as a
means of improving software
guality & developer £ pararn
productivity by... Concepts

Enabling
Systematic
Reuse

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Part of the Module

Mapping
Design
Problems to
,_ Proven
A Solutions

 Introduce patterns as a
means of improving software
guality & developer £ pararn
productivity by... Concepts

Enabling
Systematic
Reuse

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Part of the Module

Subject Observer
state * | update
observerList state = X;
notify();
setData ©
getData ConcreteObserver
notify o Observer update o)
attach doSomething
detach ,U&ZTEI’/?
for all observers
in observerList do s->getData()
observer.update()
e Summarize common ——
characteristics of patterns _ e S
i Fourth Edition
PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

30

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

* Describes a solution to a common problem arising within a context

‘ Aerospace

civil
enagineerin
Mobile g g
devices

Automotive

Electronic
Trading

31

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

* Describes a solution to a common problem arising within a context by

* Naming a recurring design structure

Subject Observer

Ob.S'E'/’VEI‘ ConcreteObserver

pattern

Intent: “Define a one-to-many
dependency between objects so that
when one object changes state, all
dependents are notified & updated”

32

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

* Describes a solution to a common problem arising within a context by

Subject Observer
e Specifying design structure explicitly | state * |update
by identifying key ClaSS/ObjeCt* observerList zt;tify(:);x; ﬁl
* Roles & relationships ;gg:;: 0
* Dependencies e Observer f;d';‘;;e‘e‘)bse;vef
* Interactions detach PaLEerN | gosomething

observer.update() s->getData()

. for all observers
e Conventions in observerList do \‘

*Interpret “class” & “object” loosely: patterns are for more than OO languages!

Overview of Patterns

Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

* Describes a solution to a common problem arising within a context by

e Abstracting from concrete design
elements

* e.g., problem domain, form factor,
vendor, etc.

Subject Observer

observerList state = X;
notify();

setData ©
getData - T

. oncreteObserver
”gt'fyh Q Observer —
attac update 0
detach ,0 attern doSomething

for all observers
in observerList do
observer.update()

s->getData()

34

Overview of Patterns Douglas C. Schmidt

Key to Mastery: Knowledge of Software Patterns

Describes a solution to a common problem arising within a context by

Subject Observer

observerList state = X;
notify();

setData ©
getData - o

. oncreteObserver
”gt'fyh Q Observer —
attac update 0
detach ,0 attern doSomething

observer.update() s->getData()

for all observers
in observerList do

SMALLIALK-80

e Distilling & codifying knowledge
gleaned by experts from their
successful design experiences

Adele Goldberg and David Robson

35

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

* They describe both a thing &
a process:.

* The “thing” (the “what”) typically
means a particular high-level
design outline or description of
code detalil

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

* They describe both a thing &
a process:.

e The “process” (the “how”)
typically describes the steps to
perform to create the “thing”

csis.pace.edu/~bergin/dcs/SoftwarePatterns Coplien.pdf has more info

http://csis.pace.edu/~bergin/dcs/SoftwarePatterns_Coplien.pdf

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

Special Annotated Edition for C¥3.0

The Java Programming The C#
Language, Progra mming
Fourth Edition Language

e They can be independent of
programming languages &
Implementation techniques

Updated
for (0S5
and ARC

Programming in

Objective-C

JOHN BARNES

SECOND EDITION

Acor ive step-by-step guide
Programming in T]_IE

Scala w Programming in
, 'C) Python 3

- A Complete Introduction to the
PROGRAMMING Python Language
LANGUAGE ovolo

BRIAN W KERNIGHAN

Martin Odersky DENNIS M.RITCHIE
Lex Spoon
artima Bill Venners e L scrTaase somes

Naturally, different patterns apply to different programming languages

Overview of Patterns

Douglas C. Schmidt

Common Characteristics of Patterns

* They define “micro-architectures”

* In other words, recurring design
structure

Subject

Observer

state
observerList

* | update

A

attach
detact
notify & ConcreteObserver
update
for all observers
in observerList do
observer.update()
Observer pattern

39

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

—_— -~ —_ -~

(Observer \) (Observer
S~ _ - _ ~—___ - _-
\\ //
\ Subject Observer//
Content Content
Observable Observer
. o .) state * | onChange
* They define “micro-architectures observerList A

registerObserver

unregisterObserver

notifyChange MOyb(?sc;?;[/ee?t

« Certain properties may be

modified for particular contexts onChange
for all observers

in observerList do ;
|

observer.onChange() Concrete |
Observer |

__________ B

One use of the " Observer)
Observer pattern in S~ o -

Android

40

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

——— — — e ——————
—_ -~ — — -~

(Observer > (: Observer \/)

S~ _ - - ~—__ - _-

\\ //

\ Subject Observer//

Broadcast

Cantext Receiver
* | onReceive
e : N state
* They define “micro-architectures observerList A

registerReceiver
unregisterReceiver

sendBroadcast ¢ BroadcastHandler

« Certain properties may be

modified for particular contexts onReceive
for all observers

in observerList do ;
|

observer.onReceive() Concrete |
Observer i

ee e e |

A different use of " Observer \)'
the Observer S~ -

pattern in Android

41

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

public class EventHandler
extends Observer {

public void update(Observable o,
Object arg)

1 /7*.* }

public class EventSource
extends Observable,

 They aren’t code or (concrete) pugT?ée\Tg?gerﬁ?gab'e {
designs, so they must be reified £ /*.*/ notifyObservers(/*.*/): }
and applied in particular
Ianguages EventSource eventSource =

new EventSource();

EventHandler eventHandler =
new EventHandler();

Observer pattern eventSource.addObserver(eventHandler);

in Java Thread thread
= new Thread(eventSource);

thread.start();

42

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

class Event Handler
- public Observer {
public:

virtual void update(Observable o,
Object arg)

{7 . *}

class Event _Source
> public Observable,

* They aren’t code or (concrete) _ public ACE_Task_Base {
designs, so they must be reified public: _
and applied in particular virtual vord svc()

Ianguages { /*.*/ notifty observers(/*.*/); }

_ Event_Source event_source;
Observer pattern in C++/ACE Event_Handler event_handler;

(uses the GoF Bridge pattern with event_source->add_observer
reference counting to simplify (event_handler);

meg]((():(r:)y &?}ngggg‘szr‘]t?é‘:)ure Event_Task task (event_source);
P task->activate();

www.dre.vanderbilt.edu/ACE has more info on ACE

http://www.dre.vanderbilt.edu/ACE

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

S ik . g

Agile
Principles, Patterns,

al Hi Prac ULEJC#

THE RATIONAL
UNIFIED PROCESS

MADE EASY
A PRACTITIONER'S GUIDE TO THE RUP

PER KROLL
PHILIPPE KRUCHTEN

* They are not methods but can be
used as an adjunct to methods, e.qg.:

e Rational Unified Process

o Agile
e Others

14

Overview of Patterns Douglas C. Schmidt

Common Characteristics of Patterns

Organizational Patterns
of Agile Software Development

Tl L r‘“‘%ﬁl‘l

Dating Design
Patterns

Elements of Reusable
Objective-Oriented Paired Programming

Ericha Gordon
Rickie Hanson
Rhonda Jackson
Jonna Disvlisses

e

.. L \

* There are also patterns for organizing X I
effective software development teams
and navigating other complex settings

45

James 0. Coplien - Neil B. Harrison

Overview of Patterns

Douglas C. Schmidt

Common Parts of a Pattern Description

* Name
* Should be pithy & memorable
Intent

* Goal behind the pattern & the
reason(s) for using it

Problem addressed by pattern

 Motivate the “forces” & situations
In which pattern is applicable

Solution

* Visual & textual descriptions of
pattern static structure,
participants,
and collaboration dynamics

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gammal
Richard Helm
Ralph Jolinson
John Vlissides

h
I
)
9 o
y 7
.
>

b |

PATTERN-ORIENTED
SOFTWARE
.~ ARCHITECTURE

A System of Patterns

A Pattern Language

Towns - Buildings - Construction

Christopher Alexander
Sara Ishikawa - Murray Silverstein

| wITH
| Max Jacobson - Ingrid Fiksdahl-King
Shiomo Angel

46

Overview of Patterns Douglas C. Schmidt

Common Parts of a Pattern Description

* Examples & Implementation Design Patterns
g u i d an Ce Elements of Reusable

Object-Oriented Software
* May include source code snippets
In one or more programming
languages

Consequences

* Pros & cons of applying the pattern
* Known uses

» Examples of real uses of the pattern

|
‘A Pattern Language \

Towns - Buildings - Construction

LB |

Christopher Alexander
Sara Ishikawa - Murray Silverstein |

PATTERN-ORIENTED

SOFTWARE : .
e Should follow the “rule of three” - e iy

]

[]
L o

i

Related patterns

* Summarize relationships & tradeoffs I
between alternative patterns for 15
similar problems

SR

See c2.com/cqgi/wiki?PatternForms for more info on pattern forms

http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms

Overview of Patterns Douglas C. Schmidt

sSummary

« Patterns codify software expertise &
support design at a more abstract level

than code Subject Observer
« Emphasize design qua design, state i e
not (obscure) language features kil N ﬁl
« e.g., the Observer pattern oot
can be implemented in many notify 9 Observer uC°d”a‘;;eteObsegver
programming languages detach pattern | gosomething

for all observers
in observerList do

observer.update() s->getData()

Patterns often equated with OO languages, but can apply to non-OO languages

Overview of Patterns

Douglas C. Schmidt

sSummary

« Patterns codify software expertise &
support design at a more abstract level
than code

» Treat class/object interactions
as a cohesive conceptual unit

e e.g., form the building blocks
for more powerful pattern
relationships

Subject Observer
s * | update
observerList state = X;

notify();
setData ©
getData

; ConcreteObserver

ggg{:yh 0 Observer —
update 0
detach patiern ngomething

for all observers
in observerList do

observer.update()

s->getData()

49

Overview of Patterns

Douglas C. Schmidt

sSummary

« Patterns codify software expertise &

support design at a more abstract level

than code

* Provide ideal targets for design
and implementation refactoring
e e.g., adapters & (wrapper)
facades

Subject Observer
s * | update
observerList state = X;

notify();
setData ©
etData
ﬁotif 0 ConcreteObserver
attacyh Observer —
update 0
detach patiern ngomething

for all observers
in observerList do

observer.update()

s->getData()

50

Overview of Patterns Douglas C. Schmidt

sSummary

« Stand-alone “pattern islands”
are unusual in practice

51

Overview of Patterns Douglas C. Schmidt

sSummary

» Patterns are often related & are typically used together

Overview of Patterns

Douglas C. Schmidt

sSummary

* There are various types of pattern relationships
o Pattern complements

Factory
Method

Disposal
Method

53

Overview of Patterns Douglas C. Schmidt

sSummary

o Stand-alone “pattern islands”
are unusual in practice

o Patterns are often related & are typically used together
* There are various types of pattern relationships

e Pattern complements

» Pattern compounds

54

Overview of Patterns

Douglas C. Schmidt

* There are various types of pattern relationships

e Pattern sequences

sSummary

Half-Sync/
Half-Async

Wrapper
Facade

Component

Configurator

Acceptor-
Connector

Abstract
Factory

Monitor
Object

55

Overview of Patterns Douglas C. Schmidt

sSummary

* There are various types of pattern relationships

@ Simplicity : Predictability

Wrapper Facade) !
G.eader/Followers)
|

Simplicity Flexibility

« Pattern languages

Acceptor-Connector><

Scalability

CHalf-Sync/I:ialf-AsynCD
: CAbstract Factory)
v

_ . Monitor Object o
Simplicity C ,)) Flexibility :
CComponent ConflguratoD

A 4 _ |
(Broker)

en.wikipedia.org/wiki/Pattern_language has discussions of pattern languages

http://en.wikipedia.org/wiki/Pattern_language

Overview of Patterns Douglas C. Schmidt

sSummary
« Patterns can be applied in all A Cumulative cost
software Iifecycle phases 1.Determine Progress 2. Identify and
objectives f_,,..-—-"‘___‘* resolve risks

e Analysis, design, & reviews

e Implementation &
optimization

« Testing & documentation

* Reuse & refactoring

Review

Im plementation

4. Plan the Release

next iteration 3. Development

and Test

57

Overview of Patterns: Part 3

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

V

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Patterns Douglas C. Schmidt

Topics Covered in this Part of the Module

Pattern
Knowledge

Implement Y

& Integrate | Trade-off

Patterns & Analysis
Code

Describe a variation-oriented process y’
for successfully applying patterns to _ Design &

software development projects Implementation
_ Decisions

59

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Have broad knowledge of patterns

relevant to their domain(s) Chain of
; Responsibility
Bridge Facade
N\ {
DGSlgH Pattems Client in args Object (Servant)
Elements of Reusable Q\J oBJ operation() O
Object-Oriented.Software ~ REF out ores
Erich Gamma &J retm
Richard Helm Q
peal o
S &=
ha SKEL
o IDL ORB
—— : STUBS INTERFACE [Object Adapter
Foreword by Grady Booch
v ,
Proxy
Adapter |

See www.dre.vanderbilt.edu/—schmidt/PDF/ORB-patterns.pdf for more info

http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Have broad knowledge of patterns
relevant to their domain(s)

?

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gammal
Richard Helm
Ralph Johnson
John Vlissides

IM-NOSIaay

=
e
=
z
n
£
=
=
z

Foreword by Grady Booch

Design Patterns: Abstraction and Reuse of
Object-Oriented Design

Erich Gamma'*, Richard Helm?®, Ralph Johnson®, John Vlissides”
" Taligent, Inc.
10725 N. De Anes Blvd., Cupertino, CA 05014-2000 USA
* LBM. Thomas J. Watson Research Center
P.O. Box T4, Yorktown Heights, NY 10568 USA

* Department of Computer Science
University of Discia st Urbans-Champaign
1034 W. Springfield Ave., Urbaza, IL 61801 USA

Abstract. w: proposs design patterns as & new mechuniam for
mign patterss identify,
name, and .L.t act common themes in chject-osiented design, They cap-
ture the intent behind a design by identifying objects, their collabors-

thoms, and the distribation of reaponsibilitics. Design patterns play mazny
roles in the chject-oriented development process: they provide a com-
mon vocabulnry for design, they reduce system complexity by maming
a0d defining sbatractions, they constitute » base of experience for buld-
ing reusable softwaze, and they nct as building blocks from which more
complex desigas can be buils. Desiga patterns can be consideced zeusable
miera-nrchitestures that contribute to an overall system srchitecture. We
describe how to express and organise design patierns and introduce a
catalog of design patterns. We alsa describe our experience in applying
design patierns Lo the design of ehject-oricnted aystems

1 Intreduction

Design methods are supposed to promote good design, to teach new design)
how te design well, and to standardize the way deslgns are developed. Typical
a design method comprises a set of syntactic notations (usually graphical) an
set of rules that govern how and when to use each notation. It will alse deser
problems that oceur in a design, how to f: lhzm and how to evaluate a desi|
Studies of expert for ! however, have shol
that knowledge is not msaru.:d mmplg around syntax, but in larger concept|

such as al) and idioms [1, 7, 9, 27], and pl.
that indicate ateps neceasary to rulﬁll & particular goal [26] It ia likely that
signers do not think about the notation they are using for recording the desi
Rather, they losk for patterns to match against plans, algorithms, data str
tures, and idioms they have learned in the past. Good designers, it appears, 4

" Wark performed while at UBILAB, Univa Bazk of Switserland, Zurich, Switserlaf

OM. Niersrusz (Fi.j: ECOOP *03, LNCS 707, pp. 406431, 1993,
© Sprasger-Verlag Berlin HeadeTheeg 1903

Erich Gamma

Urj' _JU:J MAETe
SOIVATES
i ;usL Wil
m; BEISHIB]
1) L o B

Design-Muster

rJ

Klassenbibliothek

©

Springer-Verlag

See c2.com/cgi/wiki?HistoryOfPatterns for a history of patterns

http://c2.com/cgi/wiki?HistoryOfPatterns

Overview of Patterns

Douglas C.

Schmidt

Variation-oriented Process for Applying Patterns

To apply patterns successfully,
software developers need to:

e Have broad knowledge of patterns
relevant to their domain(s)

DRAFT COVER as of 11303

Ccove

s

Small Memory
Software
Patterns for svstems with limited memory

PATTERN-ORIENTED
SOFTWARE
| ARCHITECTURE

A System of Patterns

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE
[versme 3 LEUEIEERLT

Res

omree Management

PATTERNS FOR
PARALLEL SOFTWARE
DESIGN

Design Patterns
Elements of Reusable
Object-Oriented.Seftware

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

LIITIEER FPatterns for Concurrent
d Netwarked Objects

s SOFTWARE

J2EE Parrerns

Best Practices and Design Strategies

Doug Lea
Concurrent

PATTERNS FOR
FAULT TOLERANT
SOFTWARE

'2| SOFTWARE
P ARCHITECTURE

PATTERN-ORIENTED

ARCHITECTURE

A Panern Language flar
Distributed Gbject Computing

PATTERN-ORIENTED

On Patterns and Pattern Languages

Second Edition

Programming in Java®

Design Principles and Patterns

ENTERPRISI
INTEGRATION
PATTERNS

SERVER
COMPONENT
PATTERNS

Gomponent Inlrasiruciures
Iilmstrated with EIE

SECURITY
PATTERNS

Integrating Secarity
and Systems Engineering

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Evaluate trade-offs & impact of using
certain patterns in their software

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Evaluate trade-offs & impact of using
certain patterns in their software

Mentoring from pattern experts is invaluable, especially when you first start

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Evaluate trade-offs & impact of using
certain patterns in their software

= Problems (" OPTIONS |

AT ——

\

-~

N
/

\ GLOBAL)

T~_7

» Hard-coded algorithms

data

structures)/l;l;;l;\\;
* Hard-coded generators | { gyppe /
. etc. I

VTN
,/HASH
\

\ TABLE /
\\ P J

~
=

65

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Evaluate trade-offs & impact of using

AbstractClass

TemplateMethod() ©--
PrimitiveOperation1()
Primitive Operation2()

PrimitiveOperation()

PrimitiveOperation2()

;

ConcreteClass

Template
Method ?

_ . . PrimitiveOperation1() pal‘l‘el’/?
certain patterns in their software PrimitiveOperation2/)
(T SN
7 / }
(" OPTIONS { / GEN |
? - SomaL \ PERF |
\
= \/ N —— - T~
J
Context Strat { J REY
ontex rate
K> - A [B - v LIST / N
contextinterface() algorithminterface() § \; ~_-7 | \;
\f/r READ P N \/j BooL
L \ ~ /
\ BUFFE \
3 /l}, (’H SH | \i&RRA/Yj
Strategy | | | — \ TABLE / =7
N J
,0 a tte 144] ConcreteStrategyA ConcreteStrateqyB ConcreteSirategyC ~_ -
algorithminterface() algorithminterface() algorithminterface()

Pattern languages help developers navigate thru trade-offs

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Make design & implementation
decisions about how best to
apply the selected patterns

e Patterns may require
modifications for particular
contexts

Subject

Observer

state
observerList

attach
detact

notify O

* | update

A

ConcreteObserver

update

for all observers
in observerList do
observer.update()

The Observer Pattern

67

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Make design & implementation
decisions about how best to
apply the selected patterns

e Patterns may require
modifications for particular
contexts

—_————— —_—_————

=< /
\
// (\

—_ -~ —

\ Subject Observer//
Content Content
Observable Observer
state * | onChange
observerList A

registerObserver
unregisterObserver

. MyContent
tifyCh
notiyhange — Q Observer
onChange
for all observers
in observerList do
Concrete
observer.onChange()
Observer

—_ —_

|
|
|
|
|
|
:
Observer)‘

One use of the -
Observer Pattern in S~ o —-
Andrord

68

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Make design & implementation
decisions about how best to
apply the selected patterns

e Patterns may require
modifications for particular
contexts

—_————— —_—_————

~< -~
\

—_ -~ —

\ Subject Observer//
Context Broad_cast
Recelver
state * [onRecelve
observerList A

registerReceiver
unregisterReceiver
sendBroadcast O

BroadcastHandler

onReceive
for all observers

in observerList do Concrete |
observer.onReceive(ob |
server i
_________ |
A different use of " Observer)'

the Observer S~ - -

Pattern in Android

69

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

Make design & implementation
decisions about how best to
apply the selected patterns

e Patterns may require
modifications for particular
contexts

Singleton

static instance{) ©----

singletonOperation()
getSingletonDatai)

static uniguelnstance
singletonData

If (uniquelnstance == 0)
uniquelnstance =
new Singleton;
return uniquelnstance;

Singleton pattern

John Vlissides, “To Kill a Singleton”
sourcemaking.com/design patterns/

to kill a singleton

70

http://sourcemaking.com/design_patterns/to_kill_a_singleton
http://sourcemaking.com/design_patterns/to_kill_a_singleton

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

Make design & implementation
decisions about how best to
apply the selected patterns

e Patterns may require
modifications for particular
contexts

Singleton

If (uniquelnstance == 0)

static instance() ©------{ Uniquelnstance =
new Singleton;

singletonOperation() return uniquelnstance;
getSingletonDatai)

static uniguelnstance

singlefonData Singleton pattern vs.

Double-Checked
Locking Pattern

class Singleton {
private static Singleton inst = null;
public static Singleton instance() {
Singleton result = iInst;
iIT (result == null) {
inst = result = new Singleton();

}

return result;

}

71

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

Make design & implementation
decisions about how best to
apply the selected patterns

e Patterns may require
modifications for particular
contexts

Too little synchronization

Singleton

If (uniquelnstance == 0)

static instance() ©------{ Uniquelnstance =
new Singleton;

singletonOperation() return uniquelnstance;
getSingletonDatai)

static uniguelnstance

singlefonData Singleton pattern vs.

Double-Checked
Locking Pattern

class Singleton {
private static Singleton inst = null;
public static Singleton instance() {
Singleton result = iInst;
iIT (result == null) {
inst = result = new Singleton();

}

return result;

}

72

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully, singleton T (niqueinstance == 0)
software developers need to: static instance() ©---1--- “”ﬁgﬁ'gf;g[;g;
singletonOperation() return uniquelnstance;

getSingletonDatai)

static uniguelnstance

singlefonData Singleton pattern vs.

Double-Checked

Locking Pattern
* Make design & implementation ¢jass singleton {
decisions about how best to private static Singleton inst = null;
public static Singleton instance() {
apply the selected patterns synchronized(Singleton.class) {
: Singleton result = iInst;

* Patterns may require if (result == null) {
modifications for particular inst = result = new Singleton();
contexts =

return result;

}

73

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully, singleton T (niqueinstance == 0)
software developers need to: static instance() ©---1--- “”ﬁgﬁ'gf;g[;g;
singletonOperation() return uniquelnstance;

getSingletonDatai)

static uniguelnstance

singlefonData Singleton pattern vs.

Double-Checked

Locking Pattern
* Make design & implementation ¢jass singleton {
decisions about how best to private static Singleton inst = null;
public static Singleton instance() {
apply the selected patterns ynchronized(Singleton.class) {
: Singleton result = iInst;
* Patterns may require if (result == null) {
modifications for particular inst = result = new Singleton();

contexts) ¥

return result;
Too much synchronization }

74

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns
* To apply patterns successfully, singleton 1 (uniquelnstance == 0)
software developers need to: static instance() o---1---1 “LEEE”
singletonOperation() return uniquelnstance;

getSingletonDatai)

static uniguelnstance
singletonData

Singleton pattern vs.
Double-Checked

Locking Pattern
_ _ _ class Singleton {
* Make design & implementation private static volatile Singleton
‘ol inst = null;
decisions about how best to i Singleton instance() {
apply the selected patterns Singleton result = inst;

synchronized(Singleton.class) {
result = iInst;
iIT (result == null)

e Patterns may require
modifications for particular

contexts
}

; Y }
Just right amount of synchronization return result:

{ Inst = result = new Singleton(); }

75

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully, singleton T (niqueinstance == 0)
software developers need to: static instance() ©---1--- “”ﬁgﬁ'gf;g[;g;
singletonOperation() return uniquelnstance;

getSingletonDatai)

static uniguelnstance

singlefonData Singleton pattern vs.

Double-Checked

Locking Pattern
_ _ _ class Singleton {
* Make design & implementation private static volatile Singleton
T inst = null;
decisions about how best to public static Singleton instance() {
apply the selected patterns Singleton result = inst;
_ iIT (result == null) {
* Patterns may require synchronized(Singleton.class) {
i : : result = iInst;
modifications for particular it (result — null)
contexts { inst = result = new Singleton(); }
by
Only synchronizes when inst is null ,}:etu rn result:

76

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully, singleton T (niqueinstance == 0)
software developers need to: static instance() ©---1--- “”ﬁgﬁ'gf;g[;g;
singletonOperation() return uniquelnstance;

getSingletonDatai)

static uniguelnstance

singlefonData Singleton pattern vs.

Double-Checked

Locking Pattern
_ _ _ class Singleton {
* Make design & implementation private static volatile Singleton
P inst = null;
decisions about how best to public static Singleton instance() {
apply the selected patterns Singleton result = inst;
_ iIT (result == null) {
* Patterns may require synchronized(Singleton.class) {
7 - : result = iInst;
modifications for particular it (result == null)
contexts { inst = result = new Singleton(); }

}

— — by
No synchronization after inst is created return result;

77

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

Singleton

If (uniquelnstance == 0)

static instance() ©------{ Uniquelnstance =

singletonOperation()
getSingletonDatai)

new Singleton;
return uniquelnstance;

static uniguelnstance

singlefonData Singleton pattern vs.

Double-Checked
Locking Pattern

class Singleton {

e Make design & implementation
decisions about how best to
apply the selected patterns

e Patterns may require
modifications for particular
contexts

Solution only works in JDK5 & above

private static volatile Singleton

inst = null;
Singleton instance() {

synchronized(Singleton.class) {
result = iInst;
1T (result null)
{ Inst = result = new Singleton(); }

}
}

return result;

See en.wikipedia.org/wiki/Double-checked locking for more info

http://en.wikipedia.org/wiki/Double-checked_locking

Overview of Patterns

Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

e Combine with other patterns &

implement/integrate with code

79

Overview of Patterns Douglas C. Schmidt

Variation-oriented Process for Applying Patterns

* To apply patterns successfully,
software developers need to:

- Model-View ~ . , - Presentation ~. .~~~
¢ 5 -
“ Controller . . Abstraction-Control _. r§ hared RBDDSIK}H‘.’;‘

— —_ —— — =

- ~. - THalf-Object ~. -~ ~
’ Yoo W \
- lterator ' ' plus Protocol . ‘. Interceptor P

— -
L B T e — R
— - _ J—

~ “Replicated” ~, -~ _ ~. , - Tomponenl ~
f N
~Component Group '\ Mediator ' 7 _Configurator_ .

P ~\ ,~ Database =
Layers ~ Access Layer _

— =
e m— = —

|
change

] notification
High pattern _¢
density I SN
\f Observer
S TN
notification state
interface transfer

¥ N

e Combine with other patterns & ,~ 7 Balict T~ , =~ Data_

~ _ |Interface _ . ~ Transfer Object ..

-~

A

-

Implement/integrate with code - -

80

Overview of Patterns Douglas C. Schmidt

sSummary

» Patterns support a variation-oriented
design process
Pattern

1. Determine which design elements Knowledge
can vary

2. ldentify applicable pattern(s)
3. Vary patterns &

evaluate trade-offs (& Integrate | M trade-off
4. Repeat . Patterns & | Analysis

Design &
Implementation
Decisions

81

Overview of Patterns Douglas C. Schmidt

sSummary

» Seek generality, but don’t brand
everything as a pattern

Overview of Patterns Douglas C. Schmidt

sSummary

 Articulate specific benefits and
demonstrate general applicability

* e.g., find three different existing
examples from code other than
yours!

	Slide Number 1
	Topics Covered in this Part of the Module
	Becoming a Master
	Becoming a Master
	Becoming a Master
	Becoming a Master
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Where Should Design Experience Reside?
	Where Should Design Experience Reside?
	Where Should Design Experience Reside?
	Where Should Design Experience Reside?
	Where Should Design Experience Reside?
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 24
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Parts of a Pattern Description
	Common Parts of a Pattern Description
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 58
	Topics Covered in this Part of the Module
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Summary
	Summary
	Summary

