The Singleton Pattern

Other Considerations

Douglas C. Schmidt

Learning Objectives in This Lesson

* Be aware of other considerations when applying the Singleton pattern.

Singleton GoF Object Creational

Consequences

+ Helps “declutter” class & method
interfaces

Singleton GoF Object Creational

Consequences

+ Reduces namespace pollution
& centralizes access to global
resources

See wiki.c2.com/?GlobalVariablesConsideredHarmful

http://wiki.c2.com/?GlobalVariablesConsideredHarmful

Singleton GoF Object Creational

Consequences
+ Allows extension by subclassing

Singleton

static Instance() O---{---------- If (uniquelnstance == null)
. . uniguelnstance = new Singleton();
SingletonOperation() return uniquelnstance;

GetSingletonData()

static uniquelnstance
singletonData

A

‘ Derived Singleton ‘

Singleton GoF Object Creational

Consequences

+ Only allocates resources for objects
actually accessed at least once

See en.wikipedia.org/wiki/Lazy initialization

https://en.wikipedia.org/wiki/Lazy_initialization

Singleton

GoF Object Creationa

Consequences

+ Alleviates problems with global
variables in certain programming
languages

Object Lifetime Manager

A Complementary Pattern for Controlling Object Creation and Destruction

David L. Levine and Christopher D. Gill
{levine,cdgill} @cs. wustl.edu
Department of Computer Science
Washington University
St. Louis, MO, USA

This paper appeared as a chapter in the book Design Pat-
terns in Communications, (Linda Rising, ed.), Cambridge Uni-
versity Press, 2000. Abridged versions of the paper appeared
at the Pattern Languages of Programming Conference, Aller-
ton Park, Illinois, USA, 15 — 18 August 1999 and in the C++
Report magazine, January, 2000.

1 Introduction

Creational patterns such as Singleton and Factory Method [1]
address object construction and initialization, but do not con-
sider object destruction. In some applications, however, object
destruction is as important as object construction. The Object
Lifetime Manager pattern addresses issues associated with
object destruction. Object Lifetime Manager is also an ex-
ample of a complementary pattern, which completes or ex-
tends other patterns. In particular, the Object Lifetime Man-
ager pattern completes creational patterns by considering the
entire lifetime of objects.

This paper is organized as follows: Section 2 describes the
Object Lifetime Manager pattern in detail using the Siemens
format [2]. and Section 3 presents concluding remarks.

2 The Object Lifetime Manager Pat-
tern

2.1 Intent

The Object Lifetime Manager pattern can be used to govern
the entire lifetime of objects, from creating them prior to their
first use to ensuring they are destroyed properly at program ter-
mination. In addition, this pattern can be used to replace static
object creation/destruction with dynamic object preallocation/

*“This work supported in part by Boeing, NSF grant NCR-9628218,

DARPA contract 9701516, and Nortel.

Douglas C. Schmidt
schmidt@uci.edu
Electrical & Computer
Engineering Department
University of California, Irvine, USA*

deallocation that occurs automatically during application ini-
tialization/termination.

2.2 Example

Singleton [1] is a common creational pattern that provides a
global point of access to a unique class instance and defers
creation of the instance until it is first accessed. If a singleton
is not needed during the lifetime of a program, it will not be
created. The Singleton pattern does not address the issue of
when its instance is destroyed, however, which is problematic
for certain applications and operating systems.

To illustrate why it is important to address destruction se-
mantics, consider the following logging component that pro-
vides a client programming API to a distributed logging ser-
vice [3]. Applications use the logging component as a front-
end to the distributed logging service to report errors and gen-
erate debugging traces.

class Logger

int to Logger singleton.
(void)

new Logger;
ce_;

e some informa
og (const char *

protected:

tor (prot

// . . . other resources t
// held by the singl
Vi

www.dre.vanderbilt.edu/~schmidt/PDF/ObjMan.pdf: Singleton management

http://www.dre.vanderbilt.edu/~schmidt/PDF/ObjMan.pdf

Singleton

GoF Object Creational

Consequences

— Does not address all the liabilities
with global variables

« In particular, increased implicit
dependencies & reduced
program clarity

Singleton

GoF Object Creational

Consequences

— Implementation may be less
efficient than a global variable

« Due to additional indirection
& synchronization overhead

Singleton GoF Object Creational

Consequences

— Subtle concurrency & dynamic
loading traps & pitfalls

Singleton GoF Object Creational

Consequences

— c2.com/cai/wiki?SingletonsAreEvil
summarizes Singleton drawbacks

http://c2.com/cgi/wiki?SingletonsAreEvil

Singleton GoF Object Creational

Implementation considerations
« Determine if you really must use Singleton!

« www.ibm.com/developerworks/webservices/
library/co-single has good tips:

 Will every application use this class exactly
the same way? (exactly is the key word)

 Will every application ever need only one
instance of this class? (ever & one are the
key words)

« Should the clients of this class be unaware
of the application they are part of?

It's often possible (& desirable) to avoid using Sing/eton in your programs.

http://www.ibm.com/developerworks/webservices/library/co-single

Singleton GoF Object Creational

Implementation considerations

 Defining static instance class Singleton {
method & data private static Singleton sInst = null;

public static Singleton instance() {
Singleton result = sInst;
if (result == null) {
sInst = result = new Singleton()

}

return result;

Singleton GoF Object Creational

Implementation considerations

 Avoiding concurrency class Singleton {
hazards private static Singleton sInst = null;

public static Singleton instance() {
Singleton result = sInst;
if (result == null) {
sInst = result = new Singleton()

Too little synchronization }
return result;

Singleton GoF Object Creational

Implementation considerations

« Avoiding concurrency class Singleton ({
hazards private static Singleton sInst = null;

public static Singleton instance() {
synchronized (Singleton.class) {
Singleton result = sInst;
if (result == null) {
sInst = result =
new Singleton() ;

Too much synchronization

}

return result;

Singleton GoF Object Creational

Implementation considerations

« Avoiding concurrency class Singleton ({
hazards private static volatile Singleton

sInst = null;
public static Singleton instance() {
Just the r/ghtamount Singleton result = sInst;
of synchronization if (result == null) {
synchronized (Singleton.class) {
result = sInst;

e X 1T Ny if (result == null) {
i?f%?&mﬁg(mmﬂ§rﬁ sInst = result =
tHE THREE BEARg ,

|\ S |

new Singleton() ;

}
}

return result;

Singleton

GoF Object Creational

Implementation considerations

 Avoiding concurrency
hazards

Only synchronize
when sinst is null

class Singleton ({
private static volatile Singleton

sInst = null;

public static Singleton instance() ({

Singleton result = sInst;
if (result == null) {
synchronized(Singleton.class) {
result = sInst;
if (result == null) {
sInst = result =
new Singleton() ;

}
}

return result;

Singleton

GoF Object Creational

Implementation considerations

 Avoiding concurrency
hazards

No synchronization
after sinst is created

class Singleton ({
private static volatile Singleton

sInst = null;

public static Singleton instance() ({

Singleton result = sInst;
if (result == null) {
synchronized (Singleton.class) {
result = sInst;
if (result == null) {
sInst = result =
new Singleton() ;

}
}

return result;

Singleton

GoF Object Creational

Implementation considerations

 Avoiding concurrency
hazards

This solution only works
in JDK5 & above.

WWILEY

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE
LDy Patterns for Concurrent

and Networked Objects

b |
fa)

class Singleton {
private static volatile Singleton
sInst = null;
public static Singleton instance() {
Singleton result = sInst;
if (result == null) {
synchronized (Singleton.class) {
result = sInst;
if (result == null) {
sInst = result =
new Singleton() ;

}

return result;

See en.wikipedia.org/wiki/Double-checked locking for more information.

http://en.wikipedia.org/wiki/Double-checked_locking

Singleton GoF Object Creational

Implementation considerations

 Avoiding concurrency class Singleton ({
hazards /** Private constructor */

private Singleton() { }

/**
* SingletonHolder’s loaded on first
* execution of Singleton.instance()
* or first access to SingletonHolder.
* INSTANCE, not before
*/
private static class SingletonHolder {
F—— public static final Singleton
instance = new Singleton() ;

This solution
works in all JDKs/

}

/** Returns single instance */
public static Singleton instance ()
{ return SingletonHolder.instance ; }

en.wikipedia.org/wiki/Singleton pattern#The solution of Bill Pugh has more.

http://en.wikipedia.org/wiki/Singleton_pattern#The_solution_of_Bill_Pugh

Singleton GoF Object Creational

Implementation considerations
 Deleting singletons

PATTERN HATCHING
Design Patterns Applied

“To Kill a Singleton” sourcemaking.com/design patterns/to kill a singleton

http://sourcemaking.com/design_patterns/to_kill_a_singleton

Singleton

GoF Object Creational

Implementation considerations

« Registering the singleton
instance with manager

Object Lifetime
Manager

it ()

fini ()

static starting up ()
static shutting down ()
static at exit ()

static mstance ()

at exit 1()

Application
Managed
Object
1 Preallocated Object

static mstance

www.dre.vanderbilt.edu/~schmidt/PDF/ObjMan.pdf: Singleton management

http://www.dre.vanderbilt.edu/~schmidt/PDF/ObjMan.pdf

Singleton GoF Object Creational

Known uses template <typename TYPE>
TYPE *ACE Singleton<TYPE>: :instance () {
 Unidraw’s Unidraw object TYPE *tmp = instance ;

#if defined (ALPHA MP)
// Insert CPU-specific memory barrier

« Smalltalk-80 ChangeSet,

the set of Changes to code // instruction to synchronize cache lines.
. . ! asm ("mb") ;
« InterViews Session object #endif /* ALPHA MP */
- ACE Singleton // First check

if (tmp == 0) {

ACE Guard<ACE Thread Mutex> guard (lock_);

tmp = instance ; // Reload tmp.

// Double check.

if (tmp == 0) {
tmp = new TYPE;

#if defined (ALPHA MP)

// Insert a second CPU-specific memory
// barrier instruction.

asm ("mb") ;
#endif /* ALPHA MP */
instance_ = tmp;
}
}
return tmp;

}

en.wikipedia.org/wiki/Double-checked locking has more synchronization information.

http://en.wikipedia.org/wiki/Double-checked_locking

Singleton

GoF Object Creational

Known uses

« The Java AWT Desktop
getDesktop() method

getDesktop

public static Desktop getDesktop()

Returns the Desktop instance of the current browser context.
On some platforms the Desktop API may not be supported; use
the isDesktopSupported() method to determine if the current
desktop is supported.

Returns:

the Desktop instance of the current browser context

Throws:

HeadlessException - if
GraphicsEnvironment.isHeadless() returns true

UnsupportedOperationException - if this class is not
supported on the current platform

See Also:

isDesktopSupported(), GraphicsEnvironment.isHeadless()

See docs.oracle.com/javase/8/docs/api/java/awt/Desktop.html#getDesktop

https://docs.oracle.com/javase/8/docs/api/java/awt/Desktop.html#getDesktop--

Summary of the Singleton Pattern

« Singleton simplifies access to global resources in the expression tree
processing app.

Singleton State

Tree_Context

Platform
Strategy

<<uses>>

User_Command

N\
ET_Event_Handler !
<<creates>> :
I

User_Command_Factory

Command

\ 4

Verbose_Mode Succinct_Mode
ET_Event_Handler ET_Event_Handler

orv Metnoc
y / o /

Singleton is the “go-to” of patterns, so apply it with care.

