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Learning Objectives in this Part of the Lesson
• Recognize the key components of C++ 

• Know strategies for learning C++

• Understand C++ design goals

• Learn about conflicts of C++ design 
goals
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C++ Design 
Goal Conflicts
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C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools
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C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Pointers to arbitrary memory 
locations complicate register 
allocation & garbage collection
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C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Pointers to arbitrary memory 
locations complicate register 
allocation & garbage collection

• Separate compilation 
complicates inlining due to 
difficulty of interprocedural
analysis
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C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Software quality assurance

• Dynamic memory management 
& pointers are error-prone
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C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Software quality assurance

• Dynamic memory management 
& pointers are error-prone

• Largely fixed in (best) practice
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C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Software quality assurance

• Dynamic memory management 
& pointers are error-prone

• Largely fixed in practice, e.g.,

• Using “resource acquisition is 
initialization” idiom & “holder” 
classes

See en.wikipedia.org/wiki/Resource_acquisition_is_initialization

void WriteToFile(const 

std::string& message) {

static std::mutex mutex;

std::lock_guard<std::mutex> 

lock(mutex);

std::ofstream file

("example.txt");

if (!file.is_open())

throw runtime_error("...");

file << message << std::endl;

// file will be closed 

// regardless of exception

// mutex will be unlocked 

// regardless of exception.

}

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
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C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Software quality assurance

• Dynamic memory management 
& pointers are error-prone

• Largely fixed in practice, e.g.,

• Using “resource acquisition is 
initialization” idiom & “holder” 
classes

• Memory checking tools

See www.valgrind.org

HEAP SUMMARY:

in use at exit: 1,000 bytes in 1 blocks

total heap usage: 7 allocs, 6 frees, 78,997 bytes 
allocated

LEAK SUMMARY:

definitely lost: 1,000 bytes in 1 blocks

indirectly lost: 0 bytes in 0 blocks

possibly lost: 0 bytes in 0 blocks

still reachable: 0 bytes in 0 blocks

suppressed: 0 bytes in 0 blocks

http://www.valgrind.org/
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End of C++ Design 
Goal Conflicts


