Overview of G++: Design Goal Conflicts

Douglas C. Schmidt
d.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

r=——
-

Nashville, Tennessee, USA


mailto:d.schmidt@vanderbilt.edu

Overview of ©+ Douglas C. Schmidt

Learning Objectives in this Part of the Lesson

 Learn about conflicts of C++ design
goals




C++ Design
Goal Conflicts




Overview of ©+ Douglas C. Schmidt
C++ Design Goal Conflicts

* Certain C++ design goals conflict
w/modern techniques & tools




Overview of ©+ Douglas C. Schmidt

C++ Design Goal Conflicts

* Certain C++ design goals conflict
w/modern techniques & tools, e.qg.
« Compiler optimization

* Pointers to arbitrary memory
locations complicate register
allocation & garbage collection




Overview of ©+ Douglas C. Schmidt

C++ Design Goal Conflicts

* Certain C++ design goals conflict
w/modern techniques & tools, e.qg.

« Compiler optimization

 Separate compilation
complicates inlining due to
difficulty of interprocedural
analysis




Overview of ©+ Douglas C. Schmidt
C++ Design Goal Conflicts

» Certain C++ design goals conflict
w/modern techniques & tools, e.g.

» Software quality assurance

* Dynamic memory management
& pointers are error-prone

IF HE HAD A NICKLE FOR EVERY TIME WINDOWS CRASHES..

... Oh, wait, never mind




Overview of @+ Douglas C. Schmidt

C++ Design Goal Conflicts

» Certain C++ design goals conflict
w/modern techniques & tools, e.qg.

e

THE

» Software quality assurance

. STANDARD
« Dynamic memory management
& pointers are error-prone TEMPLATE
» Largely fixed in (best) practice LIBRARY

Valgrind

e

B e . > ‘




Overview of + Douglas C. Schmidt
C++ Design Goal Conflicts

» Certain C++ design goals conflict void WriteToFile (const

w/modern techniques & tools, e.g. std: :string& message) {
static std: :mutex mutex;

std: :lock guard<std: :mutex>

 Software quality assurance lock (mutex) ;
* Dynamic memory management
& pointers are error-prone std: :ofstream file

("example. txt") ;

- Largely fixed in practice, e.g., if (1file.is open())
« Using “resource acquisition is throw runtime error("...");
initialization” idiom & “holder”
classes file << message << std::endl;

// file will be closed
// regardless of exception

// mutex will be unlocked
// regardless of exception.

}
See en.wikipedia.org/wiki/Resource acquisition is initialization



https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Overview of ©+

Douglas C. Schmidt

C++ Design Goal Conflicts

» Certain C++ design goals conflict
w/modern techniques & tools, e.g.

» Software quality assurance

* Dynamic memory management
& pointers are error-prone

» Largely fixed in practice, e.g.,

« Memory checking tools

le or md

T o ‘
— N\,

HEAP SUMMARY:
in use at exit: 1,000 bytes in 1 blocks

total heap usage: 7 allocs, 6 frees, 78,997 bytes
allocated

LEAK SUMMARY:

definitely lost: 1,000 bytes in 1 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks

still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

See www.valgrind.org



http://www.valgrind.org/

End of C++ Design
Goal Conflicts




