
Overview of C++: Design Goal Conflicts

Douglas C. Schmidt

d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 
Integrated Systems 

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


Overview of Douglas C. Schmidt

2

Learning Objectives in this Part of the Lesson
• Recognize the key components of C++ 

• Know strategies for learning C++

• Understand C++ design goals

• Learn about conflicts of C++ design 
goals



Overview of Douglas C. Schmidt

3

C++ Design 
Goal Conflicts



Overview of Douglas C. Schmidt

4

C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools



Overview of Douglas C. Schmidt

5

C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Pointers to arbitrary memory 
locations complicate register 
allocation & garbage collection



Overview of Douglas C. Schmidt

6

C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Pointers to arbitrary memory 
locations complicate register 
allocation & garbage collection

• Separate compilation 
complicates inlining due to 
difficulty of interprocedural
analysis



Overview of Douglas C. Schmidt

7

C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Software quality assurance

• Dynamic memory management 
& pointers are error-prone



Overview of Douglas C. Schmidt

8

C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Software quality assurance

• Dynamic memory management 
& pointers are error-prone

• Largely fixed in (best) practice



Overview of Douglas C. Schmidt

9

C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Software quality assurance

• Dynamic memory management 
& pointers are error-prone

• Largely fixed in practice, e.g.,

• Using “resource acquisition is 
initialization” idiom & “holder” 
classes

See en.wikipedia.org/wiki/Resource_acquisition_is_initialization

void WriteToFile(const 

std::string& message) {

static std::mutex mutex;

std::lock_guard<std::mutex> 

lock(mutex);

std::ofstream file

("example.txt");

if (!file.is_open())

throw runtime_error("...");

file << message << std::endl;

// file will be closed 

// regardless of exception

// mutex will be unlocked 

// regardless of exception.

}

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization


Overview of Douglas C. Schmidt

10

C++ Design Goal Conflicts

• Certain C++ design goals conflict 
w/modern techniques & tools, e.g.

• Compiler optimization

• Software quality assurance

• Dynamic memory management 
& pointers are error-prone

• Largely fixed in practice, e.g.,

• Using “resource acquisition is 
initialization” idiom & “holder” 
classes

• Memory checking tools

See www.valgrind.org

HEAP SUMMARY:

in use at exit: 1,000 bytes in 1 blocks

total heap usage: 7 allocs, 6 frees, 78,997 bytes 
allocated

LEAK SUMMARY:

definitely lost: 1,000 bytes in 1 blocks

indirectly lost: 0 bytes in 0 blocks

possibly lost: 0 bytes in 0 blocks

still reachable: 0 bytes in 0 blocks

suppressed: 0 bytes in 0 blocks

http://www.valgrind.org/


Overview of Douglas C. Schmidt

11

End of C++ Design 
Goal Conflicts


