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• Recognize how the Factory Method pattern can be applied to extensibly 
create variabilities in the expression tree processing app.

• Understand the structure & functionality of the Factory Method pattern.
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Intent

• Provide an API for creating an
object, but leave the choice of 
the object’s concrete type to 
its derived class(es)
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See en.wikipedia.org/wiki/Factory_method_pattern
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Applicability

• When a class cannot anticipate 
the objects it must create. 
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Applicability

• When a class cannot anticipate 
the objects it must create. 

• A class wants its derived classes 
to specify the objects it creates. 
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Applicability

• When a class cannot anticipate 
the objects it must create. 

• A class wants its derived classes 
to specify the objects it creates. 

• This approach is optional.
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Applicability

• When a class cannot anticipate 
the objects it must create. 

• A class wants its derived classes 
to specify the objects it creates. 

• This approach is optional.

• An alternative is to pass a 
parameter to the factory 
method.
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Applicability

• When a class cannot anticipate 
the objects it must create. 

• A class wants its derived classes 
to specify the objects it creates. 

• Or there’s a need to decouple 
the creation of an object from 
its subsequent use.
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This decoupling is really the essence of the Factory Method pattern!
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Structure & participants
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Structure & participants

User_Command
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Structure & participants
User_Command_Factory_Impl
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Structure & participants

Eval_Command, Print_
Command, Macro_Command, etc. 

Factory Method             GoF Class Creational



Structure & participants

Unused
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Our app passes a string to the factory method rather than using a derived class




