
The Factory Method Pattern

Structure & Functionality

Douglas C. Schmidt

• Recognize how the Factory Method pattern can be applied to extensibly
create variabilities in the expression tree processing app.

• Understand the structure & functionality of the Factory Method pattern.

Learning Objectives in This Lesson

Structure & Functionality of the
Factory Method Pattern

Douglas C. Schmidt

…

User_Command_Factory

make_command()

Intent

• Provide an API for creating an
object, but leave the choice of
the object’s concrete type to
its derived class(es)

Factory Method GoF Class Creational

See en.wikipedia.org/wiki/Factory_method_pattern

Format_Command_Factory

make_command()
<<creates>>

<<creates>>

Print_Command_Factory

make_command()

Macro_Command_Factory

make_command()
<<creates>>

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

https://en.wikipedia.org/wiki/Factory_method_pattern

Format_Command_Factory

make_command()

Macro_Command_Factory

make_command()

User_Command_Factory

make_command()

Print_Command_Factory

make_command()

Applicability

• When a class cannot anticipate
the objects it must create.

Factory Method GoF Class Creational

…

<<creates>>

<<creates>>

<<creates>>

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Format_Command_Factory

make_command()

Macro_Command_Factory

make_command()

User_Command_Factory

make_command()

Applicability

• When a class cannot anticipate
the objects it must create.

• A class wants its derived classes
to specify the objects it creates.

Factory Method GoF Class Creational

Print_Command_Factory

make_command()

…

<<creates>>

<<creates>>

<<creates>>

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Format_Command_Factory

make_command()

Macro_Command_Factory

make_command()

User_Command_Factory

make_command()

Applicability

• When a class cannot anticipate
the objects it must create.

• A class wants its derived classes
to specify the objects it creates.

• This approach is optional.

Factory Method GoF Class Creational

Print_Command_Factory

make_command()

…

<<creates>>

<<creates>>

<<creates>>

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Applicability

• When a class cannot anticipate
the objects it must create.

• A class wants its derived classes
to specify the objects it creates.

• This approach is optional.

• An alternative is to pass a
parameter to the factory
method.

Factory Method GoF Class Creational

User_Command_Factory

make_command(Param)

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

<<creates>>

Applicability

• When a class cannot anticipate
the objects it must create.

• A class wants its derived classes
to specify the objects it creates.

• Or there’s a need to decouple
the creation of an object from
its subsequent use.

Factory Method GoF Class Creational

<<creates>>

User_Command_Factory

make_command(Param)

This decoupling is really the essence of the Factory Method pattern!

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Structure & participants

Factory Method GoF Class Creational

Structure & participants

User_Command

Factory Method GoF Class Creational

Structure & participants
User_Command_Factory_Impl

Factory Method GoF Class Creational

Structure & participants

Eval_Command, Print_
Command, Macro_Command, etc.

Factory Method GoF Class Creational

Structure & participants

Unused

Factory Method GoF Class Creational

Our app passes a string to the factory method rather than using a derived class

