
The Factory Method Pattern

Motivating Example

Douglas C. Schmidt



• Recognize how the Factory Method pattern can 
be applied to extensibly create variabilities in 
the expression tree processing app.

Learning Objectives in This Lesson

User_Command_Factory

make_command()

<<creates>>User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command



Motivating the Need for
the Factory Method Pattern in the 
Expression Tree App

Douglas C. Schmidt



Factory Method decouples the creation of objects from their subsequent use.

A Pattern for Abstracting Object Creation
Purpose: Enable the extensible creation of variabilities, 

such as commands, iterators, & visitors.
C

o
m

m
a
n
d

Factory Method 

User_Command_FactoryInput_Handler

User_Command

<<creates>>

Format_Command Expr_Command

Print_Command

Eval_Command

SetCommand Quit_CommandMacro_Command

*

Null_Command

Tree_Context

1



Context: OO Expression Tree Processing App
• There are many points of variability in 

the expression tree processing app.

• e.g., user commands, traversal 
strategies, & visitor operations 
applied on an expression tree

Visitor

*
User_Command_Impl

Format

Command

Expr

Command

Eval

Command

Print

Command

Quit

Command

Macro

Command

PrintVisitorEvaluation_Visitory

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ Iterator



• There are many points of variability in 
the expression tree processing app.

• e.g., user commands, traversal 
strategies, & visitor operations 
applied on an expression tree

...d

...

...

*

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Post_Order
Iterator

Level_Order
Iterator

Pre_Order
Iterator

In_Order
Iterator

C++ Iterator

Visitor

PrintVisitorEvaluation_Visitory

Context: OO Expression Tree Processing App

Adding new variants should
not affect existing client code.

User_Command_Impl

Print

Command



Problem: Inflexible Creation of Variabilities
• Tightly coupling the creation of variabilities with client code is problematic.

• e.g., hard-coding lexical dependencies on specific 
derived classes can complicate maintenance 
& impede extensibility 

User_Command *command = 

new Print_Command();

Visitor *visitor = 

new Evaluation_Visitor();

ET_Iter_Impl *it = new 

Pre_Order_ET_Iter_Impl ();



• Define a User_Command_Factory class whose make_command()

factory method creates a User_Command object.

User_Command_Factory

make_command()

Solution: Abstract Creation of Objects

User
Command

<<creates>>



• Have the make_command() factory method implement the appropriate 

derived class of User_Command

User_Command_Factory

make_command()
User

Command

<<creates>>

Solution: Abstract Creation of Objects



User_Command_Factory

make_command()

• Have the make_command() factory method implement the appropriate 

derived class of User_Command_Impl, e.g.,

• Subclass User_Command_Factory & override the factory method 

make_command() 

<<creates>>

Print

Command

Print_Command_Factory

make_command()

<<creates>>

User
Command

Solution: Abstract Creation of Objects



• Have the make_command() factory method implement the appropriate 

derived class of User_Command_Impl, e.g.,

• Subclass User_Command_Factory & override the factory method 

make_command() 

• Or pass a parameter to the make_command() factory method & use it to 

create the appropriate User_Command_Impl derived class objects

User_Command_Factory

make_command(Param)

<<creates>>

Format_Command Expr_Command

Print_Command

Eval_Command

SetCommand Quit_CommandMacro_Command Null_Command
1

User
Command*

Solution: Abstract Creation of Objects



User_Command_Factory Class Overview

User_Command make_command(string inputstring)

...

• Create the command corresponding to the user input.

Class methods

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html


User_Command_Factory Class Overview

User_Command make_command(string inputstring)

...

• Create the command corresponding to the user input.

Class methods

This is a factory method

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html


User_Command_Factory Class Overview

User_Command make_command(string inputstring)

...

• Create the command corresponding to the user input.

Class methods

• Commonality: provides a common API to create commands

• Variability: implementations of expression tree command factory 
methods can vary depending on the requested commands

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html


User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

FACTORY_PTMF

execute()

Each factory command object conforms 
to the FACTORY_PTMF typedef & creates 
a different type of User_Command_Impl.

Command 
Name

Factory
Command

"expr"

"format"

"eval"

"macro"

"quit"

"print"

execute()

execute()

execute()

execute()

execute()

execute()

std::map<string, 
FACTORY_PTMF>

User_Command_Factory Class Overview
• Create the command corresponding to the user input.




