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• Recognize how the Factory Method pattern can 
be applied to extensibly create variabilities in 
the expression tree processing app.

Learning Objectives in This Lesson
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Motivating the Need for
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Douglas C. Schmidt



Factory Method decouples the creation of objects from their subsequent use.

A Pattern for Abstracting Object Creation
Purpose: Enable the extensible creation of variabilities, 

such as commands, iterators, & visitors.
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Context: OO Expression Tree Processing App
• There are many points of variability in 

the expression tree processing app.

• e.g., user commands, traversal 
strategies, & visitor operations 
applied on an expression tree
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• There are many points of variability in 
the expression tree processing app.

• e.g., user commands, traversal 
strategies, & visitor operations 
applied on an expression tree
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Context: OO Expression Tree Processing App

Adding new variants should
not affect existing client code.
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Problem: Inflexible Creation of Variabilities
• Tightly coupling the creation of variabilities with client code is problematic.

• e.g., hard-coding lexical dependencies on specific 
derived classes can complicate maintenance 
& impede extensibility 

User_Command *command = 

new Print_Command();

Visitor *visitor = 

new Evaluation_Visitor();

ET_Iter_Impl *it = new 

Pre_Order_ET_Iter_Impl ();



• Define a User_Command_Factory class whose make_command()

factory method creates a User_Command object.
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• Have the make_command() factory method implement the appropriate 

derived class of User_Command
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User_Command_Factory

make_command()

• Have the make_command() factory method implement the appropriate 

derived class of User_Command_Impl, e.g.,

• Subclass User_Command_Factory & override the factory method 
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• Have the make_command() factory method implement the appropriate 

derived class of User_Command_Impl, e.g.,

• Subclass User_Command_Factory & override the factory method 

make_command() 

• Or pass a parameter to the make_command() factory method & use it to 

create the appropriate User_Command_Impl derived class objects
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User_Command_Factory Class Overview

User_Command make_command(string inputstring)

...

• Create the command corresponding to the user input.

Class methods

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html


User_Command_Factory Class Overview

User_Command make_command(string inputstring)

...

• Create the command corresponding to the user input.

Class methods

This is a factory method

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html


User_Command_Factory Class Overview

User_Command make_command(string inputstring)

...

• Create the command corresponding to the user input.

Class methods

• Commonality: provides a common API to create commands

• Variability: implementations of expression tree command factory 
methods can vary depending on the requested commands

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
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Each factory command object conforms 
to the FACTORY_PTMF typedef & creates 
a different type of User_Command_Impl.

Command 
Name

Factory
Command

"expr"

"format"

"eval"

"macro"

"quit"

"print"

execute()

execute()

execute()

execute()

execute()

execute()

std::map<string, 
FACTORY_PTMF>

User_Command_Factory Class Overview
• Create the command corresponding to the user input.




