
Overview of the Expression

Tree Processing App Case

Study (Part 2)

Douglas C. Schmidt

Expre
ssion
tree

proce
ssing
app

Runtime
qualities

Non-runtime
qualities

Functional
requirements

Business
constraints

Technology
constraints

Learning Objectives in This Lesson
• Understand the goals of the object-oriented (OO) expression tree case study.

• Recognize the key behavioral & structural
properties in the expression tree domain.

• Evaluate the functional & non-
functional requirements of the
case study.

Patterns are best applied to address requirements, rather than applied blindly!

−35

−5*(3+4)

Learning Objectives in This Lesson
• Understand the goals of the object-oriented (OO) expression tree case study.

• Recognize the key behavioral & structural
properties in the expression tree domain.

• Evaluate the functional & non-
functional requirements of the
case study.

• Put all the pieces together.

Functional &
Non-Functional Requirements
of the Case Study

Douglas C. Schmidt

Functional & Non-Functional Requirements
• A functional requirement defines what a system should be able to do, i.e.,

the behavior it should perform.

en.wikipedia.org/wiki/Functional_requirements has more information.

http://en.wikipedia.org/wiki/Functional_requirements

en.wikipedia.org/wiki/Non-functional_requirement has more information.

• A non-functional requirement defines specific criteria that can be
used to judge the operation of a system, rather than its specific behaviors.

• Non-Functional requirements are also called ”quality attributes” of a
system.

Functional & Non-Functional Requirements

http://en.wikipedia.org/wiki/Non-functional_requirement

Case Study: Functional Requirements
• “Succinct mode”—the calculator

interface evaluates arithmetic
expressions input by a user that must
conform to a grammar

expr ::= factor expr-tail

expr-tail ::= add_sub expr

| /* empty */;

factor ::= term factor-tail

factor-tail ::= mul_div factor

| /* empty */;

mul_div ::= '×' | '/'

add_sub ::= '+' | '-‘

term :: NUMBER | '(' expr ')'

• The succinct mode can be command-line
or GUI interface.

• In the GUI version, a user presses Android
buttons to enter expressions.

Case Study: Functional Requirements

−35

−5*(3+4)

• The succinct mode can be command-line
or GUI interface.

• In the GUI version, a user presses Android
buttons to enter expressions.

• In the command-line version a user
designates input expressions via various
notations.

• e.g., in-fix, post-fix, etc.

Case Study: Functional Requirements

In-fix expressions can contain parenthesized sub-expressions.

−35

−5*(3+4)

• “Verbose mode”—prompts the user to enter command requests that control
app behavior

• The order of these command requests must follow a specific protocol.

Command Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

Case Study: Functional Requirements

Command Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

• “Verbose mode”—prompts the user to enter command requests that control
app behavior

• The order of these command requests must follow a specific protocol.

Case Study: Functional Requirements

Command Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

• “Verbose mode”—prompts the user to enter command requests that control
app behavior

• The order of these command requests must follow a specific protocol.

Case Study: Functional Requirements

Command Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

• “Verbose mode”—prompts the user to enter command requests that control
app behavior

• The order of these command requests must follow a specific protocol.

Case Study: Functional Requirements

Command Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

• “Verbose mode”—prompts the user to enter command requests that control
app behavior

• The order of these command requests must follow a specific protocol.

Case Study: Functional Requirements

Command Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

• “Verbose mode”—prompts the user to enter command requests that control
app behavior

• The order of these command requests must follow a specific protocol.

Case Study: Functional Requirements

Command Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

• “Verbose mode”—prompts the user to enter command requests that control
app behavior

• The order of these command requests must follow a specific protocol.

Case Study: Functional Requirements

• The verbose mode can be accessed via:

• A GUI interface

Case Study: Functional Requirements

• The verbose mode can be accessed via:

• A GUI interface

• A command-line interface

Case Study: Functional Requirements

• Apply a pattern-oriented OO design to simplify extensibility & portability

Post_Order
Iterator

B
ri
d
g
e Expression_Tree Component_Node

C++
Stack

In_Order
Iterator

Level_Order
Iterator

C++
Queue

<< create >>

C++ Iterator

Visitor

Visitor

PrintVisitor

<< accept >>

Evaluation_Visitory

Strategy

Iterator

Pre_Order
Iterator

Composite
Unary_Node

Leaf_Node

Composite
Binary_Node …

Composite

Case Study: Non-Functional Requirements

• Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,

• Add new operations on the expression tree nodes
without modifying the tree structure or
implementation

Case Study: Non-Functional Requirements

• “In-order” traversal = -5×(3+4)

• “Pre-order” traversal = ×-5+34

• “Post-order” traversal = 5-34+×

• “Level-order” traversal = ×-+534

• Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,

• Add new operations on the expression tree nodes
without modifying the tree structure or
implementation, e.g.,

• Print the contents of the expression
tree in various traversal orders

Case Study: Non-Functional Requirements

• Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,

• Add new operations on the expression tree nodes
without modifying the tree structure or
implementation, e.g.,

• Print the contents of the expression
tree in various traversal orders

• Compute the “value" of the
expression tree

• e.g., via a post-order traversal
& stack-based
evaluator

1. S = [5] push(node.item())

2. S = [-5] push(-pop())

3. S = [-5, 3] push(node.item())

4. S = [-5, 3, 4] push(node.item())

5. S = [-5, 7] push(pop()+pop())

6. S = [-35] push(pop()*pop())

Case Study: Non-Functional Requirements

• Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,

• Add new operations on the expression tree nodes
without modifying the tree structure or
implementation, e.g.,

• Print the contents of the expression
tree in various traversal orders

• Compute the “value" of the
expression tree

• Perform semantic analysis &
optimization, generate code,
etc. 0: bipush -5

2: istore_1

3: iconst_3

4: istore_2

5: iconst_4

6: istore_3

7: iload_1

8: iload_2

9: iload_3

10: iadd

11: imul

12: istore 4

Case Study: Non-Functional Requirements

• Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,

• Add new operations on the expression tree nodes
without modifying the tree structure or
implementation

• Systematically reuse the expression tree
processing app code in diverse runtime
platforms, e.g.,

• The app code is reused in both
Android GUI & command-line platforms

Case Study: Non-Functional Requirements

−35

−5*(3+4)

Putting All the
Pieces Together

Douglas C. Schmidt

Putting All the Pieces Together
• The expression tree processing

app is a realistic case study of
how to apply GoF patterns.

Design Problem Pattern

Non-extensible & error-prone
designs

Composite

Minimizing impact of variability Bridge

Inflexible expression input
processing

Interpreter

Inflexible interpreter output Builder

Scattered request implementations Command

Inflexible creation of variabilities Factory
Method

Inflexible expression tree traversal Iterator

Obtrusive behavior changes Strategy

Non-extensible tree operations Visitor

Incorrect user request ordering State

Non-extensible operating modes Template
Method

Minimizing global variable liabilities Singleton

−35

−5*(3+4)

• The expression tree processing
app is a realistic case study of
how to apply GoF patterns.

• All the case study code is
written in C++ (~6K LOC
& ~60 classes).

Putting All the Pieces Together

See github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

• The expression tree processing
app is a realistic case study of
how to apply GoF patterns.

• All the case study code is
written in C++.

• There are command-line &
Android GUI-based versions.

Putting All the Pieces Together

−35

−5*(3+4)

See github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

