Overview of the Expression
Tree Processing App Case
Study (Part 2)

Douglas C. Schmidt

Learning Objectives in This Lesson

 Evaluate the functional & non-
functional requirements of the
case study.

Non-runtime
qualities

Runtime
qualities

Functional
requirements

Business
constraints

Technology
constraints

Patterns are best applied to address requirements, rather than applied blindly!

Learning Objectives in This Lesson

 Put all the pieces together. w

Douglas C. Schmidt

Functional &

Non-Functional Requirements
of the Case Study

Functional & Non-Functional Requirements

A functional requirement defines what a system should be able to do, i.e.,
the behavior it should perform.

What operations installed How the customer was billed What the customer really
needed

en.wikipedia.org/wiki/Functional reguirements has more information.

http://en.wikipedia.org/wiki/Functional_requirements

Functional & Non-Functional Requirements

« A non-functional requirement defines specific criteria that can be
used to judge the operation of a system, rather than its specific behaviors.

THE MARKETING S0 WE CAN EITHER OR LJE CAN PRETEND
DEPARTMENT HAS Hﬁ%ﬁﬁf‘.ﬁf—r CANCEL THIS MEETING THAT ARGUING WITH
ASKED US TO MAKE THAT MEANS. AND GO ASK THEM, . . EACH OTHER ABOUT

OUR PRODUCTS MORE THE TRUE MEANING

OF "ROBUST™ IS JUST
AS GOOD.

ROBUST.

DibsriCaricomsifgmul com

£330 Scalt Adsma, ing, Disk by LN, inc

=

WHILE THAT OPTION LJOULD 1T BE ETHICAL 1 THINK
15 STUPID, IT WOULD TO IGNORE THE LONG- ROBUST T
GIVE US THE ILLUSION TERM INTERESTS OF MEANS IT
OF DOIMNG SOMETHING ?gﬁﬁﬁg&i ggﬂ Htﬂs L_?TEEEF MEANS

FUL RIGHT M ATURES. !

VsE "'"" IGHT NOW. OURSELVES FOR A FELJ
MINUTES?
ir
%

S 0
M i

« Non-Functional requirements are also called “quality attributes” of a
system.

en.wikipedia.org/wiki/Non-functional reguirement has more information.

http://en.wikipedia.org/wiki/Non-functional_requirement

Case Study: Functional Requirements

e “Succinct mode”"—the calculator
interface evaluates arithmetic

expressions input by a user that must

conform to a grammar

expr ::

expr-tail ::

factor ::

factor-tail ::

mul_div e

add sub ::

term ::

factor expr-tail

NUMBER |

add sub expr
/* empty */;

term factor-tail

mul_div factor
/* empty */;

J

Case Study: Functional Requirements

* The succinct mode can be command-line
or GUI interface.

 In the GUI version, a user presses Android
buttons to enter expressions. ~5*(3+4)

Case Study: Functional Requirements

 The succinct mode can be command-line ,
: o
or GUI interface. S e
8P & DME 1:34pm

. ExpressionF

~5%(3+4)

 In the command-line version a user
designates input expressions via various

notations.
 e.g., in-fix, post-fix, etc.

Run: expression_tree a —

> "D:\Douglas Schmid-
>-5 % (3 + 4)

»
P 4Run = 0:Messages B 9:Git erminal A CMake
F@FvG 4 spaces C++: expression_tree | Debug aster W &

In-fix expressions can contain parenthesized sub-expressions.

% 2: Favorites
& dl

» It

Case Study: Functional Requirements

« “Verbose mode"—prompts the user to enter command requests that control

app behavior

« The order of these command requests must follow a specific protocol.

Command | Behavior

format

expr
set
print

eval
quit

Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

Allows the user to designate the current input expression
Sets a variable that can be used in an expression

Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

Evaluates the value of the current input expression
Exits the program

Case Study: Functional Requirements

« “Verbose mode"—prompts the user to enter command requests that control
app behavior

« The order of these command requests must follow a specific protocol.

Command | Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

Case Study: Functional Requirements

« “Verbose mode"—prompts the user to enter command requests that control

app behavior

« The order of these command requests must follow a specific protocol.

Command | Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

Case Study: Functional Requirements

« “Verbose mode"—prompts the user to enter command requests that control

app behavior

« The order of these command requests must follow a specific protocol.

Command | Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

Case Study: Functional Requirements

« “Verbose mode"—prompts the user to enter command requests that control
app behavior

« The order of these command requests must follow a specific protocol.

Command | Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)
expr Allows the user to designate the current input expression
set Sets a variable that can be used in an expression
[print Prints the current input expression using the designated]
traversal order (e.g., in-order, post-order, pre-order, etc.)
eval Evaluates the value of the current input expression

quit Exits the program

Case Study: Functional Requirements

« “Verbose mode"—prompts the user to enter command requests that control

app behavior

« The order of these command requests must follow a specific protocol.

Command | Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

Case Study: Functional Requirements

« “Verbose mode"—prompts the user to enter command requests that control

app behavior

« The order of these command requests must follow a specific protocol.

Command | Behavior

format Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

expr Allows the user to designate the current input expression

set Sets a variable that can be used in an expression

print Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

eval Evaluates the value of the current input expression

quit Exits the program

Case Study: Functional Requirements

 The verbose mode can be accessed via:
« A GUI interface

Case Study: Functional Requirements

 The verbose mode can be accessed via:

4 3

LN

&P & ME 1:35m
® ExpressionF :

« A command-line interface

Format

Print

', expression_tree s -
"D:\Douglas Schmidt\Dropbox\Documents\Vandy\cs251\CPlusPlus\ex “”fim
- la. format [in-order] Set Variable
1b. set [variable=value]
: 2. expr [expression]

3a. eval [post-order]

3b. print [in-order | pre-order | post-order | level-order]
0. quit

>format in-order

1. expr [expression]

2a. eval [post-order]

2b. print [in-order | pre-order | post-order | level-order]
@a. format [in-order]

Ob. set [variable=value]

0c. quit

>expr -5 * (3 + 4)

Case Study: Non-Functional Requirements
« Apply a pattern-oriented OO design to simplify extensibility & portability

Visitor
Expression_Tree > Component_Node |= = = = = = = = = = > .
: A << accept >> Visitor I
<< create >> | []
. . A
| Composite Leaf Node
Vv Unary_Node
C++ lterator |] Evaluation_VisitoryI PrintVisitor I
Composite
Iterator Binary_Node
/\
|
Level Order
Iterator
In_Order
4 [terator
C++
QUELE Post_Order CI+
[terator Stack

Pre_Order

Strategy Iterator

Case Study: Non-Functional Requirements

« Apply a pattern-oriented OO design to simplify extensibility & portability, e.q.,

» Add new operations on the expression tree nodes
without modifying the tree structure or
implementation

Case Study: Non-Functional Requirements

« Apply a pattern-oriented OO design to simplify extensibility & portability, e.q.,
» Add new operations on the expression tree nodes

without modifying the tree structure or °

implementation, e.q.,
 Print the contents of the expression ‘

tree in various traversal orders

* “In-order” traversal = -5x (3+4)

e “Pre-order” traversal = x-5+34

* “Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534

Case Study: Non-Functional Requirements
« Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,
« Add new operations on the expression tree nodes

without modifying the tree structure or

implementation, e.qg.,

« Compute the “value" of the |
expression tree
* e.g., via a post-order traversal Yi

& stack-based
evaluator

1.S =[5] push (node.item())
2.S =[-5] push (-pop ())

3.5=[-5,3] push(node.item())
4.S = [-5, 3, 4] push(node.item())
5.5=[-5,7] push(pop()+pop())
6.5=[-35] push(pop()*pop())

Case Study: Non-Functional Requirements
« Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,
« Add new operations on the expression tree nodes

without modifying the tree structure or °

implementation, e.qg.,

« Perform semantic analysis & Yi

optimization, generate code,

etc. 0: bipush -5 7: iload_1
2: istore_ 1 8: iload_2
3: iconst_3 9: iload_3
4: istore_2 10: iadd
5: iconst_4 11: imul
6: istore_3 12: istore 4

Case Study: Non-Functional Requirements
« Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,

- Systematically reuse the expression tree —
processing app code in diverse runtime

platforms, e.g.,

» The app code is reused in both
Android GUI & command-line platforms

Run: expression_tree a —
"D:\Douglas Schmid-
e >-5 * (3 + 4)
S,E 35
>5:Rv = 0: Messag K 9:Git B Termina I A CMak
WITF-8 4 spaces B master W &

Douglas C. Schmidt

Putting All the
Pieces Together

Putting All the Pieces Together
» The expression tree processing m

app is a realistic case study of

Non-extensible & error-prone Composite
how to apply GoF patterns. designs
Minimizing impact of variability Bridge
Inflexible expression input Interpreter
processing
—5%(3+4) Inflexible interpreter output Builder

Scattered request implementations Command
Inflexible creation of variabilities Factory

Method
Inflexible expression tree traversal Iterator
Obtrusive behavior changes Strategy
Non-extensible tree operations Visitor
Incorrect user request ordering State
Non-extensible operating modes Template

Method

Minimizing global variable liabilities Singleton

Putting All the Pieces Together

The expression tree processing | o cuswemwnn x + - o X
app iS a realistic case Study of € > ¢ o (s gBomEgEEE © O %) 0 © f 1 WO G o :
how to apply GoF patterns. R

« All the case study code is
written in C++ (~6K LOC
& ~60 classes).

See github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

Putting All the Pieces Together

» The expression tree processing
app is a realistic case study of

how to apply GoF patterns.

L8O

i® ExpressionF

-5%(3+4)

 There are command-line &
Android GUI-based versions.

Run: expression_tree x —

g "D:\Douglas Schmid-
f—|=| >-5 * (3 + 4)
S, E -35

P 4Run = 0:Messages M 9:Git B Terminal A CMake
WITF-8 4 spaces P master W &

See github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

https://github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

