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Learning Objectives in This Lesson

 Evaluate the functional & non-
functional requirements of the
case study.

Non-runtime
qualities

Runtime
qualities

Functional
requirements

Business
constraints

Technology
constraints

Patterns are best applied to address requirements, rather than applied blindly!
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Functional & Non-Functional Requirements

A functional requirement defines what a system should be able to do, i.e.,
the behavior it should perform.

What operations installed How the customer was billed What the customer really
needed

en.wikipedia.org/wiki/Functional reguirements has more information.



http://en.wikipedia.org/wiki/Functional_requirements

Functional & Non-Functional Requirements

« A non-functional requirement defines specific criteria that can be
used to judge the operation of a system, rather than its specific behaviors.
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« Non-Functional requirements are also called “quality attributes” of a
system.

en.wikipedia.org/wiki/Non-functional reguirement has more information.



http://en.wikipedia.org/wiki/Non-functional_requirement

Case Study: Functional Requirements

e “Succinct mode”"—the calculator
interface evaluates arithmetic

expressions input by a user that must

conform to a grammar

expr ::

expr-tail ::

factor ::

factor-tail ::

mul_div e

add sub ::

term ::

factor expr-tail

NUMBER |

add sub expr
/* empty */;

term factor-tail

mul_div factor
/* empty */;

J




Case Study: Functional Requirements

* The succinct mode can be command-line
or GUI interface.

 In the GUI version, a user presses Android
buttons to enter expressions. ~5*(3+4)




Case Study: Functional Requirements

 The succinct mode can be command-line ,
: o
or GUI interface. S e
8P & DME 1:34pm

. ExpressionF

~5%(3+4)

 In the command-line version a user
designates input expressions via various

notations.
 e.g., in-fix, post-fix, etc.

Run: expression_tree a —

> "D:\Douglas Schmid-
>-5 % (3 + 4)

»
P 4Run = 0:Messages B 9:Git erminal A CMake
F@FvG 4 spaces C++: expression_tree | Debug aster W &

In-fix expressions can contain parenthesized sub-expressions.
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Case Study: Functional Requirements

« “Verbose mode"—prompts the user to enter command requests that control

app behavior

« The order of these command requests must follow a specific protocol.

Command | Behavior

format

expr
set
print

eval
quit

Allows the user to select the input format (e.g., in-fix, post-
fix, etc.)

Allows the user to designate the current input expression
Sets a variable that can be used in an expression

Prints the current input expression using the designated
traversal order (e.g., in-order, post-order, pre-order, etc.)

Evaluates the value of the current input expression
Exits the program
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Case Study: Functional Requirements

 The verbose mode can be accessed via:
« A GUI interface




Case Study: Functional Requirements

 The verbose mode can be accessed via:

4 3

LN

&P & ME 1:35m
® ExpressionF :

« A command-line interface

Format

Print

', expression_tree s -
"D:\Douglas Schmidt\Dropbox\Documents\Vandy\cs251\CPlusPlus\ex “”fim
- la. format [in-order] Set Variable
# 1b. set [variable=value]
: 2. expr [expression]

3a. eval [post-order]

3b. print [in-order | pre-order | post-order | level-order]
0. quit

>format in-order

1. expr [expression]

2a. eval [post-order]

2b. print [in-order | pre-order | post-order | level-order]
@a. format [in-order]

Ob. set [variable=value]

0c. quit

>expr -5 * (3 + 4)




Case Study: Non-Functional Requirements
« Apply a pattern-oriented OO design to simplify extensibility & portability

Visitor
Expression_Tree > Component_Node |= = = = = = = = = = > .
: A << accept >> Visitor I
<< create >> | [ ]
. . A
| Composite Leaf Node
Vv Unary_Node
C++ lterator | ] Evaluation_VisitoryI PrintVisitor I
Composite
Iterator Binary_Node
/\
|
Level Order
Iterator
In_Order
4 [terator
C++
QUELE Post_Order CI+
[terator  Stack

Pre_Order

Strategy Iterator




Case Study: Non-Functional Requirements

« Apply a pattern-oriented OO design to simplify extensibility & portability, e.q.,

» Add new operations on the expression tree nodes
without modifying the tree structure or
implementation
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« Apply a pattern-oriented OO design to simplify extensibility & portability, e.q.,
» Add new operations on the expression tree nodes

without modifying the tree structure or °

implementation, e.q.,
 Print the contents of the expression ‘

tree in various traversal orders

* “In-order” traversal = -5x (3+4)

e “Pre-order” traversal = x-5+34

* “Post-order” traversal = 5-34+x

* “Level-order” traversal = x-+534




Case Study: Non-Functional Requirements
« Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,
« Add new operations on the expression tree nodes

without modifying the tree structure or

implementation, e.qg.,

« Compute the “value" of the |
expression tree
* e.g., via a post-order traversal Yi

& stack-based
evaluator

1.S =[5] push (node.item())
2.S =[-5] push (-pop () )

3.5=[-5,3] push(node.item())
4.S = [-5, 3, 4] push(node.item())
5.5=[-5,7] push(pop()+pop())
6.5=[-35]  push(pop()*pop())




Case Study: Non-Functional Requirements
« Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,
« Add new operations on the expression tree nodes

without modifying the tree structure or °

implementation, e.qg.,

« Perform semantic analysis & Yi

optimization, generate code,

etc. 0: bipush -5 7: iload_1
2: istore_ 1 8: iload_2
3: iconst_3 9: iload_3
4: istore_2 10: iadd
5: iconst_4 11: imul
6: istore_3 12: istore 4




Case Study: Non-Functional Requirements
« Apply a pattern-oriented OO design to simplify extensibility & portability, e.g.,

- Systematically reuse the expression tree —
processing app code in diverse runtime

platforms, e.g.,

» The app code is reused in both
Android GUI & command-line platforms

Run: expression_tree a —
"D:\Douglas Schmid-
e >-5 * (3 + 4)
S,E 35
>5:Rv = 0: Messag K 9:Git B Termina I A CMak
WITF-8 4 spaces B master W &
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Putting All the
Pieces Together




Putting All the Pieces Together
» The expression tree processing m

app is a realistic case study of

Non-extensible & error-prone Composite
how to apply GoF patterns. designs
Minimizing impact of variability Bridge
Inflexible expression input Interpreter
processing
—5%(3+4) Inflexible interpreter output Builder

Scattered request implementations Command
Inflexible creation of variabilities Factory

Method
Inflexible expression tree traversal Iterator
Obtrusive behavior changes Strategy
Non-extensible tree operations Visitor
Incorrect user request ordering State
Non-extensible operating modes Template

Method

Minimizing global variable liabilities Singleton




Putting All the Pieces Together

The expression tree processing | o cuswemwnn x  + - o X
app iS a realistic case Study of € > ¢ o (s gBomEgEEE © O %) 0 © f 1 WO G o :
how to apply GoF patterns. R

« All the case study code is
written in C++ (~6K LOC
& ~60 classes).

See github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree



https://github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree

Putting All the Pieces Together

» The expression tree processing
app is a realistic case study of

how to apply GoF patterns.

L8O

i® ExpressionF

-5%(3+4)

 There are command-line &
Android GUI-based versions.

Run: expression_tree x —

g "D:\Douglas Schmid-
f—|=| >-5 * (3 + 4)
S, E -35

P 4Run = 0:Messages M 9:Git B Terminal A CMake
WITF-8 4 spaces P master W &

See github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree



https://github.com/douglascraigschmidt/CPlusPlus/tree/master/expression-tree




