The Object-Oriented Design
of the Expression Tree
Processing App

Douglas C. Schmidt




Learning Objectives in This Lesson

« Understand the OO design of the expression tree processing app.
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en.wikipedia.org/wiki/Unified Modeling Language has more on OOD notations.



http://en.wikipedia.org/wiki/Unified_Modeling_Language
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Lesson Introduction

 Object-oriented design (OOD) is a method of planning a system of interacting
objects to solve software problem(s).

Object-
Extensibility Oriented Abstraction
Design

en.wikipedia.org/wiki/Object-oriented design has more information on OO design.



https://en.wikipedia.org/wiki/Object-oriented_design

Lesson Introduction

« OOD employs “hierarchical data
abstraction.”

- Components are designed based A
on stable class & object roles
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en.wikipedia.org/wiki/Liskov_substitution principle has more information.



http://en.wikipedia.org/wiki/Liskov_substitution_principle
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en.wikipedia.org/wiki/Low-Coupling / High-Cohesion pattern has more information.



http://en.wikipedia.org/wiki/Low-Coupling_/_High-Cohesion_pattern
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www.dre.vanderbilt.edu/~schmidt/patterns-frameworks.html has more information.



http://www.dre.vanderbilt.edu/~schmidt/patterns-frameworks.html
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OO Design of Expression Tree Processing App

» Create an OO design based on modeling classes & objects in “expression
tree” domain.




OO Design of Expression Tree Processing App

« Conduct scope, commonality, & variabifity analysis to determine stable APIs
& variable extension points.
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See www.dre.Vanderbilt.edu/~schmidt/PDF/Commonality Variability.pdf



http://www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

OO Design of Expression Tree Processing App

« Conduct scope, commonality, & variabifity analysis to determine stable APIs
& variable extension points.

 Model a tree as a collection of nodes.

Leaf
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OO Design of Expression Tree Processing App

« Conduct scope, commonality, & variabifity analysis to determine stable APIs

& variable extension points.

 Model a tree as a collection of nodes.

Note the different types
of nodes in a tree.

(Integers)




OO Design of Expression Tree Processing App

« Conduct scope, commonality, & variabifity analysis to determine stable APIs
& variable extension points.

Expression_Tree

* Represent nodes as class hierarchy,
capturing properties of each node. ——
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See en.wikipedia.org/wiki/Arity



https://en.wikipedia.org/wiki/Arity

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.
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en.wikipedia.org/wiki/Design Patterns has information on the “Gang of Four” (GoF) book.



http://en.wikipedia.org/wiki/Design_Patterns

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

« A framework is an integrated set of software components that collaborate
to provide a reusable architecture for a family of related applications.
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See www.dre.vanderbilt.edu/~schmidt/frameworks.html



http://www.dre.vanderbilt.edu/~schmidt/
http://www.dre.vanderbilt.edu/~schmidt/frameworks.html
http://www.dre.vanderbilt.edu/~schmidt/CACM-frameworks.html

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

* Frameworks exhibit three characteristics that differentiate them from other
forms of systematic reuse.

Application-Specific Functionality

www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html has info on systematic reuse.



http://www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC) ‘

See en.wikipedia.org/wiki/Inversion of control



https://en.wikipedia.org/wiki/Inversion_of_control

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC)
* The framework controls the ‘
main execution thread

L




OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC) ‘

« Decides how/when to run
app code via callbacks

L

See en.wikipedia.org/wiki/Callback (computer programming)



https://en.wikipedia.org/wiki/Callback_(computer_programming)

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC) ‘

« Decides how/when to run
app code via callbacks

* e.g., an Android looper
dispatches a handler,
which then dispatches

o &

See blog.mindorks.com/android-core-looper-handler-and-handlerthread-bd54d69fe91a



https://blog.mindorks.com/android-core-looper-handler-and-handlerthread-bd54d69fe91a

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC) ‘

« ToC is often called “The
Hollywood Principle”

;O

See www.dre.vanderbilt.edu/~schmidt/Coursera/articles/hollywood-principle.txt



http://www.dre.vanderbilt.edu/~schmidt/Coursera/articles/hollywood-principle.txt

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality
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2. Domain-specific structure
& functionality

Databases

Networking
See en.wikipedia.org/wiki/Domain-driven design



https://en.wikipedia.org/wiki/Domain-driven_design
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* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

2. Domain-specific structure ‘
& functionality

* e.g., capabilities that can

be reused in 1+ domain(s) Stock ’ Mobile
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OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality
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2. Domain-specific structure
& functionality

* e.g., capabilities that can
be reused in 1+ domain(s)

(4

Networking Databases

«

Application-specific functionality can systematically reuse framework components.




OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality
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* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality
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3. Semi-complete applications

« Hook methods plug app
logic into the framework

Databases

See codebetter.com/davelaribee/2008/06/16/hook-methods



http://codebetter.com/davelaribee/2008/06/16/hook-methods/
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* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

3. Semi-complete applications

Social Apps

« Mediate interactions among
common abstract & variant
concrete classes/interfaces

Networking

Databases

e.g., Java Runnable is an abstract interface providing basis for concrete variants.
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 Integrate pattern-oriented language & library features with frameworks.
« Both an app-specific framework...

| Design Patterns
Expression Tree tree = ...; Hiientast Rausbls
Object-Oriented,Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissi

Visitor print visitor = ...;

for (auto iter = tree.begin(order);
iter !'= tree.end(order);
++iter)
(*iter) .accept (print visitor);

\

Factory Method, Bridge, Composite, Iterator, Strategy, & Visitor patterns
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This app-specific framework exhibits high pattern density!
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« Integrate pattern-oriented language & library features with frameworks.
« Both an app-specific framework... & off-the-shelf frameworks...

APPLICATIONS
SMS/MMS IM Browser

Email Calendar Media Player  Photo Album

APPLICATION FRAMEWORK

LIBRARIES ANDROID RUNTIME

D SQLite WebKit Libe Core Libraries

e
Framework

HARDWARE ABSTRACTION LAYER

Camera Bluetooth GPS Radio (RIL) Wik

LINUX KERNEL

See developer.android.com & en.wikipedia.org/wiki/Standard Template Library



http://developer.android.com/
https://en.wikipedia.org/wiki/Standard_Template_Library

OO Design of Expression Tree Processing App

« Complexity resides in (stable) structure & APIs, rather than (variable)
algorithms.
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See www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062



http://www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062




