The Object-Oriented Design
of the Expression Tree
Processing App

Douglas C. Schmidt

Learning Objectives in This Lesson

« Understand the OO design of the expression tree processing app.

Expression_Tree

Component_Node |«

A

\ 4

Composite
Leaf N
Unary_Node €aitiNoas
1 A 1
Composite_Binary Composite_Negate
Node Node
I I
Composite Composite
Add_Node Subtract_Node
Composite Composite
Multiply_Node Divide_Node

en.wikipedia.org/wiki/Unified Modeling Language has more on OOD notations.

http://en.wikipedia.org/wiki/Unified_Modeling_Language

Douglas C. Schmidt
Lesson Introduction

Lesson Introduction

 Object-oriented design (OOD) is a method of planning a system of interacting
objects to solve software problem(s).

Object-
Extensibility Oriented Abstraction
Design

en.wikipedia.org/wiki/Object-oriented design has more information on OO design.

https://en.wikipedia.org/wiki/Object-oriented_design

Lesson Introduction

« OOD employs “hierarchical data
abstraction.”

- Components are designed based A
on stable class & object roles

C++ lterator

& relationships
_ Level Order
« Rather than functions lterator

corresponding to actions
In_Order

Iterator

Post_Order
Iterator

Pre_Order
Iterator

en.wikipedia.org/wiki/Liskov_substitution principle has more information.

http://en.wikipedia.org/wiki/Liskov_substitution_principle

Lesson Introduction

Input_Handler

handle_input()
prompt_user()

It also associates actions with N

specific objects and/or classes make_command()
of objects. execute_command()
« Emphasize high cohesion *
& low coupling
Verbose _Mode Succinct_Mode
Input_Handler Input_Handler
prompt_user() prompt_user()
make_command() make_command()

en.wikipedia.org/wiki/Low-Coupling / High-Cohesion pattern has more information.

http://en.wikipedia.org/wiki/Low-Coupling_/_High-Cohesion_pattern

Lesson Introduction

Expression_Tree » Component_Node
<< create >> E | A |
I Composite Leaf Node
W Unary_Node
C++ lterator | /\ |
« Well-designed OO programs lterator B Node
group classes & objects via
: |
patterns & combine them to Covel order
form frameworks. lterator
In_Order
4 Iterator
C++
Quete Post_Order Ct+t
Iterator > Stack
Strategy Pre e 4

www.dre.vanderbilt.edu/~schmidt/patterns-frameworks.html has more information.

http://www.dre.vanderbilt.edu/~schmidt/patterns-frameworks.html

Douglas C. Schmidt

OO Design of Expression Tree
Processing App

OO Design of Expression Tree Processing App

» Create an OO design based on modeling classes & objects in “expression
tree” domain.

OO Design of Expression Tree Processing App

« Conduct scope, commonality, & variabifity analysis to determine stable APIs
& variable extension points.

PERIODIC TABL.' OF THE ELEMENTS

1401 1508 il 0]

o Pu r

(&3 2370 (244) 257) (2%9) (260)
=

American Chemical Society, 115 » DC 20036, 1-800-227-5558

See www.dre.Vanderbilt.edu/~schmidt/PDF/Commonality Variability.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/Commonality_Variability.pdf

OO Design of Expression Tree Processing App

« Conduct scope, commonality, & variabifity analysis to determine stable APIs
& variable extension points.

 Model a tree as a collection of nodes.

Leaf
Nodes
(Integers)

OO Design of Expression Tree Processing App

« Conduct scope, commonality, & variabifity analysis to determine stable APIs

& variable extension points.

 Model a tree as a collection of nodes.

Note the different types
of nodes in a tree.

(Integers)

OO Design of Expression Tree Processing App

« Conduct scope, commonality, & variabifity analysis to determine stable APIs
& variable extension points.

Expression_Tree

* Represent nodes as class hierarchy,
capturing properties of each node. ——

- e.g., the “arities” (binary & unary A
nodes) ' |

Composite
Leaf N
Unary_Node el

A

Composite_Binary Composite_Negate
Node Node

A

Composite Composite
Add_Node Subtract_Node

A 4

A

Composite Composite
Multiply _Node Divide_Node

See en.wikipedia.org/wiki/Arity

https://en.wikipedia.org/wiki/Arity

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

Visitor
Expression_Tree § Component_Node |- = —=5==== == > —
T AN << accept >> Visitor I
<< create >> | | |
. _ A
| Composite Leaf_Node
WV Unary_Node
C++ lterator [] Evaluation_VisitoryI PrintVisitor I
Composite
Iterator Binary_Node
/\
|
Level Order
Iterator
In_Order
4 Iterator
C++
QUELE Post_Order CL
Iterator ™ Stack
Pre_Order
Strategy Iterator

en.wikipedia.org/wiki/Design Patterns has information on the “Gang of Four” (GoF) book.

http://en.wikipedia.org/wiki/Design_Patterns

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

« A framework is an integrated set of software components that collaborate
to provide a reusable architecture for a family of related applications.

i
s
[gc?ﬂ

See www.dre.vanderbilt.edu/~schmidt/frameworks.html

http://www.dre.vanderbilt.edu/~schmidt/
http://www.dre.vanderbilt.edu/~schmidt/frameworks.html
http://www.dre.vanderbilt.edu/~schmidt/CACM-frameworks.html

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

* Frameworks exhibit three characteristics that differentiate them from other
forms of systematic reuse.

Application-Specific Functionality

www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html has info on systematic reuse.

http://www.dre.vanderbilt.edu/~schmidt/reuse-lessons.html

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC) ‘

See en.wikipedia.org/wiki/Inversion of control

https://en.wikipedia.org/wiki/Inversion_of_control

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC)
* The framework controls the ‘
main execution thread

L

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC) ‘

« Decides how/when to run
app code via callbacks

L

See en.wikipedia.org/wiki/Callback (computer programming)

https://en.wikipedia.org/wiki/Callback_(computer_programming)

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC) ‘

« Decides how/when to run
app code via callbacks

* e.g., an Android looper
dispatches a handler,
which then dispatches

o &

See blog.mindorks.com/android-core-looper-handler-and-handlerthread-bd54d69fe91a

https://blog.mindorks.com/android-core-looper-handler-and-handlerthread-bd54d69fe91a

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

1. Inversion of control (IoC) ‘

« ToC is often called “The
Hollywood Principle”

;O

See www.dre.vanderbilt.edu/~schmidt/Coursera/articles/hollywood-principle.txt

http://www.dre.vanderbilt.edu/~schmidt/Coursera/articles/hollywood-principle.txt

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

Stock Mobile

Trading Social
Media

©

i

2. Domain-specific structure
& functionality

Databases

Networking
See en.wikipedia.org/wiki/Domain-driven design

https://en.wikipedia.org/wiki/Domain-driven_design

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

2. Domain-specific structure ‘
& functionality

* e.g., capabilities that can

be reused in 1+ domain(s) Stock ’ Mobile
Trading Social Apps
Media
Application /L/ r< -
domains
=S . Databases
Infrastructure

domains

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

Stock Mobile

Trading Social
Media

©

i

2. Domain-specific structure
& functionality

* e.g., capabilities that can
be reused in 1+ domain(s)

(4

Networking Databases

«

Application-specific functionality can systematically reuse framework components.

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of systematic reuse. Application-Specific Functionality

Stock Mobile
©

e

3. Semi-complete applications

——

Databases

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

Sto Mobile
Trad Social Apps
Media
JE

<_:k
ing
(G

Networking

3. Semi-complete applications

« Hook methods plug app
logic into the framework

Databases

See codebetter.com/davelaribee/2008/06/16/hook-methods

http://codebetter.com/davelaribee/2008/06/16/hook-methods/

OO Design of Expression Tree Processing App

* Apply “"Gang of Four” (GoF) patterns to guide the development of a
framework of extensible classes.

 Frameworks exhibit three characteristics that differentiate them from other

forms of Systematic reuse. Application-Specific Functionality

3. Semi-complete applications

Social Apps

« Mediate interactions among
common abstract & variant
concrete classes/interfaces

Networking

Databases

e.g., Java Runnable is an abstract interface providing basis for concrete variants.

OO Design of Expression Tree Processing App

 Integrate pattern-oriented language & library features with frameworks.
« Both an app-specific framework...

| Design Patterns
Expression Tree tree = ...; Hiientast Rausbls
Object-Oriented,Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissi

Visitor print visitor = ...;

for (auto iter = tree.begin(order);
iter !'= tree.end(order);
++iter)
(*iter) .accept (print visitor);

\

Factory Method, Bridge, Composite, Iterator, Strategy, & Visitor patterns

Ed
>
o
o
Z
O
=
=
=
3
2
=
z
T
=
(9}
=
b
v
4]
o
z
>
F
Q
o
k<
)
&
=
z
o
$%3
&
=
&
3

o

This app-specific framework exhibits high pattern density!

OO Design of Expression Tree Processing App

« Integrate pattern-oriented language & library features with frameworks.
« Both an app-specific framework... & off-the-shelf frameworks...

APPLICATIONS
SMS/MMS IM Browser

Email Calendar Media Player Photo Album

APPLICATION FRAMEWORK

LIBRARIES ANDROID RUNTIME

D SQLite WebKit Libe Core Libraries

e
Framework

HARDWARE ABSTRACTION LAYER

Camera Bluetooth GPS Radio (RIL) Wik

LINUX KERNEL

See developer.android.com & en.wikipedia.org/wiki/Standard Template Library

http://developer.android.com/
https://en.wikipedia.org/wiki/Standard_Template_Library

OO Design of Expression Tree Processing App

« Complexity resides in (stable) structure & APIs, rather than (variable)
algorithms.

Visitor
Expression_Tree > Component_Node |= == === === = > o
| A << accept >> Visitor I
<< create >> | []
. . A
| Composite Leaf_Node
v Unary_Node
C++ Iterator [] Evaluation_VisitoryI PrintVisitor I
Composite
Iterator Binary_Node
/\
|
Level Order
Iterator
In_Order
Iterator
C++
Queue Post_Order CI+
Iterator ™ Stack
Pre_Order
Strategy Iterator

See www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

http://www.drdobbs.com/windows/software-complexity-bringing-order-to-ch/199901062

